Climate Dynamics

, Volume 52, Issue 9–10, pp 5849–5860 | Cite as

Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models

  • Josefina BlázquezEmail author
  • Silvina A. Solman


A group of eight CMIP5 models are used to evaluate how much of the future changes in winter precipitation can be explained by changes in frontal activity over the Southern Hemisphere (SH). The frontal activity is calculated at the 850 hPa level using the cyclonic vorticity, the horizontal gradient of temperature and the specific humidity. The changes are evaluated taking into account the historical and the RCP45 experiments. Changes in frontal activity are positive over most of the SH, being the areas with the largest increases over the mid to high latitudes. Most of these changes are driven especially by the changes in the specific humidity. The precipitation change shows a decrease at subtropical latitudes, mostly associated with a decrease in non frontal precipitation, controlled by a decrease in relative humidity and in moisture flux convergence. At mid to higher latitudes, the precipitation responds to increases in both frontal and non frontal precipitation, associated with increasing frontal activity and relative humidity and increases in the moisture flux convergence at the lower levels of the atmosphere, respectively.


Precipitation Fronts CMIP5 models Southern Hemisphere Wintertime 



We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was supported by the following Grants: FONCyT-PICT-2012-1972, FONCyT-PICT-2014-2730 and UBACYT2014 Nº 20020130200233BA. The authors are grateful to two anonymous reviewers, whose comments and suggestions allowed improving the manuscript.


  1. Bengtsson L, Hodges KI (2006) Storm tracks and climate change. J Clim 19:3518–3543. CrossRefGoogle Scholar
  2. Berry G, Reeder MJ, Jakob C (2011) A global climatology of atmospheric fronts. Geophys Res Lett 38:L04809. Google Scholar
  3. Blázquez J, Solman SA (2018) Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Clim Dyn 50:2705–2717. CrossRefGoogle Scholar
  4. Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17:1517–1528CrossRefGoogle Scholar
  5. Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:LI0805. CrossRefGoogle Scholar
  6. Catto JL, Nicholls N, Jakob C, Shelton KL (2014) Atmospheric fronts in current and future climates. Geophys Res Lett 41:7642–7650. CrossRefGoogle Scholar
  7. Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res 117:D23118. Google Scholar
  8. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  9. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. CrossRefGoogle Scholar
  10. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. CrossRefGoogle Scholar
  11. Knutti R, Sedlácek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373. CrossRefGoogle Scholar
  12. Lehmann J, Coumou D, Frieler K, Eliseev AV, Levermann A (2014) Future changes in extratropical storm tracks and baroclinicity under climate change. Environ Res Lett 9:084002. CrossRefGoogle Scholar
  13. Lim EP, Simmonds I (2009) Effects of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim Dyn 33:19–32. CrossRefGoogle Scholar
  14. Naud CM, Posselt DJ, van den Heever SC (2012) Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J Clim 25:5135–5151. CrossRefGoogle Scholar
  15. Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780. CrossRefGoogle Scholar
  16. Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo S, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351. CrossRefGoogle Scholar
  17. Solman SA, Orlanski I (2016) Climate change over the extratropical southern hemisphere: the tale from an ensemble of reanalysis datasets. J Clim 29:1673–1687. CrossRefGoogle Scholar
  18. Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155. CrossRefGoogle Scholar
  19. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. CrossRefGoogle Scholar
  20. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. CrossRefGoogle Scholar
  21. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. CrossRefGoogle Scholar
  22. Utsumi N, Kim H, Kanae S, Oki T (2016) Which weather systems are projected to cause future changes in mean and extreme precipitation in CMIP5 simulations? J Geophys Res Atmos 121:10522–10537. CrossRefGoogle Scholar
  23. Utsumi N, Kim H, Kanae S, Oki T (2017) Relative contributions of weather systems to mean and extreme global precipitation. J Geophys Res Atmos 122:152–167. CrossRefGoogle Scholar
  24. Wallace JM, Lim GH, Blackmon ML (1988) Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J Atmos Sci 45:439–462.<0439:RBCTAT>2.0.CO;2CrossRefGoogle Scholar
  25. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/FCEN-UBA), Instituto Franco Argentino del Clima y sus Impactos (UMI IFAECI/CNRS), Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La Plata. (FCAG/UNLP)Buenos AiresArgentina
  2. 2.Departamento de Ciencias de la Atmósfera y los Océanos (FCEN-UBA), Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/FCEN-UBA)Instituto Franco Argentino del Clima y sus Impactos (UMI IFAECI/CNRS)Buenos AiresArgentina

Personalised recommendations