Climate Dynamics

, Volume 52, Issue 7–8, pp 3983–3995 | Cite as

Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change

  • Nicholas SilerEmail author
  • Gerard H. Roe
  • Kyle C. Armour
  • Nicole Feldl


Climate models simulate an increase in global precipitation at a rate of approximately 1–3% per Kelvin of global surface warming. This change is often interpreted through the lens of the atmospheric energy budget, in which the increase in global precipitation is mostly offset by an increase in net radiative cooling. Other studies have provided different interpretations from the perspective of the surface, where evaporation represents the turbulent transfer of latent heat to the atmosphere. Expanding on this surface perspective, here we derive a version of the Penman–Monteith equation that allows the change in ocean evaporation to be partitioned into a thermodynamic response to surface warming, and additional diagnostic contributions from changes in surface radiation, ocean heat uptake, and boundary-layer dynamics/relative humidity. In this framework, temperature is found to be the primary control on the rate of increase in global precipitation within model simulations of greenhouse gas warming, while the contributions from changes in surface radiation and ocean heat uptake are found to be secondary. The temperature contribution also dominates the spatial pattern of global evaporation change, leading to the largest fractional increases at high latitudes. In the surface energy budget, the thermodynamic increase in evaporation comes at the expense of the sensible heat flux, while radiative changes cause the sensible heat flux to increase. These tendencies on the sensible heat flux partly offset each other, resulting in a relatively small change in the global mean, and contributing to an impression that global precipitation is radiatively constrained.


Hydrologic cycle Global warming 



We are very grateful to Ray Pierrehumbert and four anonymous reviewers for their excellent comments that greatly improved the paper.


This work was supported by the National Science Foundation (AGS-1752796 [KCA] and AGS-1524569 [NF]).


  1. Allen M, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232Google Scholar
  2. Andrews T, Forster PM (2010) The transient response of global-mean precipitation to increasing carbon dioxide levels. Environ Res Lett 5(2):025212. CrossRefGoogle Scholar
  3. Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22(10):2557–2570. CrossRefGoogle Scholar
  4. Andrews T, Forster P, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37(14):L14701. CrossRefGoogle Scholar
  5. Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105(22):7664–9. CrossRefGoogle Scholar
  6. Boer G (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239CrossRefGoogle Scholar
  7. DeAngelis AM, Qu X, Zelinka MD, Hall A (2015) An observational radiative constraint on hydrologic cycle intensification. Nature 528(7581):249–253. CrossRefGoogle Scholar
  8. Fläschner D, Mauritsen T, Stevens B (2016) Understanding the intermodel spread in global-mean hydrological sensitivity. J Clim 29(2):801–817. CrossRefGoogle Scholar
  9. Frieler K, Meinshausen M, Schneider von Deimling T, Andrews T, Forster P (2011) Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys Res Lett 38(4).
  10. Fu Q, Feng S (2014) Responses of terrestrial aridity to global warming. J Geophys Res Atmos 119(13):7863–7875. CrossRefGoogle Scholar
  11. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31(3):L03205. CrossRefGoogle Scholar
  12. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699CrossRefGoogle Scholar
  13. Kleidon A, Renner M (2013a) A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change. Earth Syst Dyn 4(2):455–465. CrossRefGoogle Scholar
  14. Kleidon A, Renner M (2013b) Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol Earth Syst Sci 17(7):2873–2892. CrossRefGoogle Scholar
  15. Lambert FH, Faull NE (2007) Tropospheric adjustment: the response of two general circulation models to a change in insolation. Geophys Res Lett 34(3):L03701. CrossRefGoogle Scholar
  16. Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35(16):L16706. CrossRefGoogle Scholar
  17. Lambert FH, Allen MR, Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget? J Clim 22(3):499–517. CrossRefGoogle Scholar
  18. Le Hir G, Donnadieu Y, Goddéris Y, Pierrehumbert RT, Halverson GP, Macouin M, Nédélec A, Ramstein G (2009) The snowball earth aftermath: exploring the limits of continental weathering processes. Earth Planet Sci Lett 277(3–4):453–463. CrossRefGoogle Scholar
  19. Lorenz DJ, DeWeaver ET, Vimont DJ (2010) Evaporation change and global warming: the role of net radiation and relative humidity. J Geophys Res Atmos 115(D20):D20118. CrossRefGoogle Scholar
  20. Manabe S, Wetherald RT (1975) The effects of doubling the CO\(\_2\) concentration on the climate of a general circulation model. J Atmos Sci 32(1):3–15. 032<0003:TEODTC>2.0.CO;2Google Scholar
  21. McInerney D, Moyer E (2012) Direct and disequilibrium effects on precipitation in transient climates. Atmos Chem Phys Discuss 12(8):19649–19681.
  22. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE, Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. CrossRefGoogle Scholar
  23. Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37(13):L13701. CrossRefGoogle Scholar
  24. Monteith JL (1981) Evaporation and surface temperature. Q J R Meterol Soc 107(451):1–27. CrossRefGoogle Scholar
  25. O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21(15):3815–3832. CrossRefGoogle Scholar
  26. O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic constraints on precipitation under climate change. Surv Geophys 33(3–4):585–608. CrossRefGoogle Scholar
  27. Pendergrass AG, Hartmann DL (2014) The atmospheric energy constraint on global-mean precipitation change. J Clim 27(2):757–768. CrossRefGoogle Scholar
  28. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc A Math Phys Eng Sci 193(1032):120–145. CrossRefGoogle Scholar
  29. Pierrehumbert RT (1999) Subtropical water vapor as a mediator of rapid global climate change. In: Mechanisms of global climate change at millennial time scales, pp 339–361.
  30. Pierrehumbert RT (2002) The hydrologic cycle in deep-time climate problems. Nature 419(6903):191–8. CrossRefGoogle Scholar
  31. Pierrehumbert RT (2010) Principles of planetary climate. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Previdi M (2010) Radiative feedbacks on global precipitation. Environ Res Lett 5(2):025211. CrossRefGoogle Scholar
  33. Priestly CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92. 100<0081:OTAOSH>2.3.CO;2Google Scholar
  34. Richter I, Xie SP (2008) Muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res Atmos 113(D24):D24118. CrossRefGoogle Scholar
  35. Samset BH, Myhre G, Forster PM, Hodnebrog Ø, Andrews T, Faluvegi G, Fläschner D, Kasoar M, Kharin V, Kirkevåg A, Lamarque JF, Olivié D, Richardson T, Shindell D, Shine KP, Takemura T, Voulgarakis A (2016) Fast and slow precipitation responses to individual climate forcers: a PDRMIP multimodel study. Geophys Res Lett 43(6):2782–2791. CrossRefGoogle Scholar
  36. Scheff J, Frierson DMW (2014) Scaling potential evapotranspiration with greenhouse warming. J Clim 27(4):1539–1558. CrossRefGoogle Scholar
  37. Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21(23):6141–6155. CrossRefGoogle Scholar
  38. Takahashi K (2009) Radiative constraints on the hydrological cycle in an idealized radiativeconvective equilibrium model. J Atmos Sci 66(1):77–91. CrossRefGoogle Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA, Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. CrossRefGoogle Scholar
  40. Trenberth K (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42(1):327–339. CrossRefGoogle Scholar
  41. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47(1):123–138. CrossRefGoogle Scholar
  42. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34(15).
  43. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J, Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769. CrossRefGoogle Scholar
  44. Van Der Ent RJ, Tuinenburg OA (2017) The residence time of water in the atmosphere revisited. Hydrol Earth Syst Sci 21:779–790. CrossRefGoogle Scholar
  45. Wetherald RT, Manabe S, Wetherald RT, Manabe S (1975) The effects of changing the solar constant on the climate of a general circulation model. J Atmos Sci 32(11):2044–2059. 032<2044:TEOCTS>2.0.CO;2Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nicholas Siler
    • 1
    Email author
  • Gerard H. Roe
    • 2
  • Kyle C. Armour
    • 3
  • Nicole Feldl
    • 4
  1. 1.College of Earth, Ocean, and Atmospheric ScienceOregon State UniversityCorvallisUSA
  2. 2.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  3. 3.Department of Atmospheric Sciences, School of OceanographyUniversity of WashingtonSeattleUSA
  4. 4.Department of Earth and Planetary SciencesUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations