Skip to main content

Precipitable water and CAPE dependence of rainfall intensities in China

Abstract

The influence of temperature on precipitation in China is investigated from two aspects of the atmospheric water cycle: available water vapor and atmospheric instability. Daily observations are used to analyze how rainfall intensities and its spatial distribution in mainland China depend on these two aspects. The results show that rainfall intensities, and especially rainfall extremes, increase exponentially with available water vapor. The efficiency of water vapor conversion to rainfall is higher in northwestern China where water vapor is scarce than in southeastern China where water vapor is plentiful. The results also reveal a power law relationship between rainfall intensity and convective instability. The fraction of convective available potential energy (CAPE) converted to upward velocity is much larger over southeastern China than over the arid northwest. The sensitivities of precipitation to temperature-induced changes in available water vapor and atmospheric convection are thus geographically reciprocal. Specifically, while conversion of water vapor to rainfall is relatively less efficient in southeastern China, conversion of CAPE to upward kinetic energy is more efficient. By contrast, in northwestern China, water vapor is efficiently converted to rainfall but only a small fraction of CAPE is converted to upward motion. The detailed features of these relationships vary by location and season; however, the influences of atmospheric temperature on rainfall intensities and rainfall extremes are predominantly expressed through changes in available water vapor, with changes in convective instability playing a secondary role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adams DK, Souza EP (2009) CAPE and Convective Events in the Southwest during the North American Monsoon. Mon Weather Rev 137(1):83–98. https://doi.org/10.1175/2008MWR2502.1

    Article  Google Scholar 

  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232

    Article  Google Scholar 

  3. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    Article  Google Scholar 

  4. Arakawa A, Schubert WH (1974) Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J Atmos Sci 31(3):674–701

    Article  Google Scholar 

  5. Berg P et al (2009) Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J Geophys Res 114:D18102. https://doi.org/10.1029/2009JD012008

    Article  Google Scholar 

  6. Brooks H (1994) On the environments of tornadic and nontornadic mesocyclones. Weather ad Forecast 9:606–618

    Article  Google Scholar 

  7. Brooks HE, Carbin GW, Marsh PT (2014) Increased variability of tornado occurrence in the United States. Science 346:349–352

    Article  Google Scholar 

  8. Chan K, Chan J (2012) Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon Wea Rev 140:811–824. https://doi.org/10.1175/MWR-D-10-05062.1

    Article  Google Scholar 

  9. Chen GT-J (1994) Large-scale circulations associated with the East Asian summer monsoon and the Mei-Yu over South China and Taiwan. J Meteorol Soc Jpn 72:959–983

    Article  Google Scholar 

  10. Dee DP et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  11. DeMott CA, Randall DA (2004) Observed variations of tropical convective available potential energy. J Geophys Res 109:D02102

    Article  Google Scholar 

  12. Derbyshire SH, Beau I, Bechtold P, Grandpeix JY, Piriou JM, Redelsperger JL, Soares P (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130:3055–3079

    Article  Google Scholar 

  13. Donat M, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 6:508–513

    Article  Google Scholar 

  14. Donner LJ, Phillips VT (2003) Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J Geophys Res 108(D22):4701

    Article  Google Scholar 

  15. Doswell CA III, Rasmussen EN (1994) The effect of neglecting the virtual temperature correction on CAPE calculations. Weather Forecast 9:625–629

    Article  Google Scholar 

  16. Durre I, Vose RS, Wuertz DB (2006) Overview of the integrated global radiosonde archive. J Clim 19:53–68

    Article  Google Scholar 

  17. Durre I, Williams CN, Yin X, Vose RS (2009) Radiosonde-based trends in precipitable water over the Northern Hemisphere: an update. J Geophys Res Atmos 114:D5

    Article  Google Scholar 

  18. Emanuel KA (1994) Atmospheric convection. Oxford Univ. Press, New York

    Google Scholar 

  19. Gordon ND, Jonko AK, Forster PM, Shell KM (2013) An observationally based constraint on the water-vapor feedback. J Geophys Res Atmos 118:12435–12443

    Article  Google Scholar 

  20. Haerter JO, Berg P (2009) Unexpected rise in extreme precipitation caused by a shift in rain type? Nat Geosci 2:372–373. https://doi.org/10.1038/ngeo523

    Article  Google Scholar 

  21. Held IM, Soden BJ (2006) Robust Responses of the Hydrological Cycle to Global Warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  22. Hettmansperger TP, Sheather SJ (1986) Confidence intervals based on Interpolated order statistics. Statist Probab Lett 4:75–79. https://doi.org/10.1016/0167-7152(86)90021-0

    Article  Google Scholar 

  23. Jones RH, Westra S, Sharma A (2010) Observed relationships between extreme sub daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37(September):1–5. https://doi.org/10.1029/2010GL045081

    Google Scholar 

  24. Kirkpatrick C, McCaul EW, Cohen C (2011) Sensitivities of simulated convective storms to environmental CAPE. Mon Weather Rev 139:3514–3532

    Article  Google Scholar 

  25. Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, Hennon P (2013) Probable maximum precipitation and climate change. Geophys Res Lett 40:1402–1408

    Article  Google Scholar 

  26. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. https://doi.org/10.1038/ngeo262

    Article  Google Scholar 

  27. Lepore C, Veneziano D, Molini A (2015) Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys Res Lett 42:74–83. https://doi.org/10.1002/2014GL062247

    Article  Google Scholar 

  28. Lu X, Yu H, Lei X (2011) Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteorol Sin 25:104. https://doi.org/10.1007/s13351-011-0008-9

    Article  Google Scholar 

  29. Lu E et al (2014) Changes of summer precipitation in China: the dominance of frequency and intensity and linkage with changes in moisture and air temperature. J Geophys Res Atmos 119(12):575–612, 587. https://doi.org/10.1002/2014jd022456

    Article  Google Scholar 

  30. North GR, Erukhimova TL (2009) Atmospheric thermodynamics. Cambridge Univ. Press, New York

    Book  Google Scholar 

  31. Nyblom J (1992) Note on interpolated order statistics. Statist Probab Lett 14:129–131. https://doi.org/10.1016/0167-7152(92)90076-H

    Article  Google Scholar 

  32. O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st century climate change. Proc Natl Acad Sci USA 106(35):14773–14777. https://doi.org/10.1073/pnas.0907610106

    Article  Google Scholar 

  33. Singh M, O’Gorman P (2013) Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys Res Lett 41:6037–6044

    Article  Google Scholar 

  34. Subrahmanyam K, Kumar K, Babu A (2015) Phase relation between CAPE and precipitation at diurnal scales over the Indian summer monsoon region. Atmos Sci Lett 16:346–354

    Article  Google Scholar 

  35. Taszarek M, Brooks H, Czernecki B, Szuster P, Fortuniak K (2018) Climatological aspects of convective parameters over Europe: a comparison of ERA-Interim and sounding data. J Clim. https://doi.org/10.1175/JCLI-D-17-0596.1

    Google Scholar 

  36. Trapp RJ, Diffenbaugh NS, Brooks HE, Baldwin ME, Robinson ED, Pal JS (2007) Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global warming radiative forcing. Proc Natl Acad Sci USA 104:19719–19723

    Article  Google Scholar 

  37. Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim Change 39:667–694

    Article  Google Scholar 

  38. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  39. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperatures. Geophys Res Lett 32:L14703

    Article  Google Scholar 

  40. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The Changing Character of Precipitation. Bull Am Meteorol Soc 84(9):1205–1218

    Article  Google Scholar 

  41. Utsumi N, Seto S, Kanae S, Maeda EE, Oki T (2011) Does higher surface temperature intensify extreme precipitation? Geophys Res Lett 38:L16708 (GL048426)

    Article  Google Scholar 

  42. Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:L09707

    Article  Google Scholar 

  43. Ye H et al (2014) Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys Res Lett 41:2941–2947. https://doi.org/10.1002/2014GL059830

    Article  Google Scholar 

  44. Yuan Z et al (2015) Historical changes and future projection of extreme precipitation in China. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1643-3

    Google Scholar 

  45. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J Clim 18(7):1096–1108

    Article  Google Scholar 

  46. Zhou T, Li Z (2002) Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19:167–180

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge NOAA National Centers for Environment Information for providing public access to the IGRA radiosonde data (https://doi.org/10.7289/V5X63K0Q), which are available at https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive. We would like to thank National Meteorological Information Center of Chinese Meteorological Administration for providing daily gauge-based precipitation data (http://data.cma.cn/en). This work was supported by the Ministry of Science and Technology of China (2014CB441303).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanluan Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Lin, Y., Wright, J.S. et al. Precipitable water and CAPE dependence of rainfall intensities in China. Clim Dyn 52, 3357–3368 (2019). https://doi.org/10.1007/s00382-018-4327-8

Download citation

Keywords

  • Convective instability
  • Available water vapor
  • Rainfall intensity
  • China