Climate Dynamics

, Volume 52, Issue 5–6, pp 2631–2646 | Cite as

An investigation of CMIP5 model biases in simulating the impacts of central Pacific El Niño on the East Asian summer monsoon

  • Juan FengEmail author
  • Wen Chen
  • Hainan Gong
  • Jun Ying
  • Wenping Jiang


The delayed impacts of the central Pacific (CP) El Niño on the East Asian summer monsoon (EASM) are evaluated by comparing historical runs from Coupled Model Intercomparison Project Phase 5 models against reanalysis data. In observations, an anomalous western North Pacific anticyclone (WNPAC), linking CP El Niño to the EASM, forms due to the transition of sea surface temperature (SST) warming into SST cooling over the CP, which generates a WNPAC through a Gill–Matsuno response. In comparison with the observational result, only one-third of the models (i.e., the type-I models) capture a weaker and smaller WNPAC, whereas the other two-thirds (i.e., the type-II models) fail to reproduce a WNPAC. The simulation biases in both of type-I models and type-II models mainly arise from an unrealistic, long-lasting CP El Niño warming, which causes a north Indian Ocean SST warming bias in models through air–sea interaction process. This north Indian Ocean SST warming generates the WNPAC through capacitor effects, which is different from the WNPAC formation mechanism in observations. This discrepancy leads to simulation biases in type-I models. In type-II models, the unrealistic CP El Niño warming persists into summer, which produces an anomalous cyclone over the central-western Pacific. The opposite effect of the CP and north Indian Ocean SST warming on the WNP atmospheric circulation leads to disappearance of the WNPAC. Hence, large simulation biases are produced in type-II models. Further analysis demonstrates the slow decay of CP El Niño is caused by the unrealistically simulated climatological SST, which creates strong warm meridional oceanic advection and results in a sustained CP El Niño warming.


Central Pacific El Niño East Asian summer monsoon CMIP5 models Western North Pacific anticyclone Simulation bias 



This study was supported jointly by the National Key Research and Development Program (Grant No. 2016YFA0600604) and the National Natural Science Foundation of China (Grant Nos. 41675091 and 41230527).


  1. Ashok K, Behera KS, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. CrossRefGoogle Scholar
  2. Bao M, Han RQ (2009) Delayed impacts of the El Nino episodes in the central Pacific on the summertime climate anomalies of eastern China in 2003 and 2007. Adv Atmos Sci 3:553–563CrossRefGoogle Scholar
  3. Bao Q, Lin PF, Zhou TJ, Liu YM, Yu YQ, Wu GX, He B, He J, Li LJ, Li JD, Li YC, Liu HL et al (2013) The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv Atmos Sci 30:561–576CrossRefGoogle Scholar
  4. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  5. Chang C, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs Part I: roles of the subtropical ridge. J Clim 13:4310–4325CrossRefGoogle Scholar
  6. Chou C, Huang L-F, Tu JY, Tseng L, Hsueh Y-C (2009) El Niño impacts on precipitation in the Western North Pacific-East Asian sector. J Clim 22:2039–2057CrossRefGoogle Scholar
  7. Du Y, Xie SP, Huang G, Hu KM (2009) Role of air–sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J Clim 22:2023–2038CrossRefGoogle Scholar
  8. Feng J, Chen W, Tam CY, Zhou W (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31:2091–2101CrossRefGoogle Scholar
  9. Feng J, Liu P, Chen W, Wang XC (2015) Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos Sci Lett 16:32–37CrossRefGoogle Scholar
  10. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  11. Ham Y-G, Kug J-S (2012) How well do current climate models simulate two types of El Nino? Clim Dyn 39:383–398CrossRefGoogle Scholar
  12. Huang RH, Wu YF (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32CrossRefGoogle Scholar
  13. Huang R, Chen J, Wang L, Lin Z (2012) Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv Atmos Sci 29:910–942CrossRefGoogle Scholar
  14. Jiang WP, Huang G, Hu KM, Wu RG, Gong HN, Chen XL, Tao WC (2017) Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: dependence on the ENSO decay pace. J Clim 30:109–127CrossRefGoogle Scholar
  15. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  16. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  17. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  18. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705CrossRefGoogle Scholar
  19. Li T, Tung C, Hwu JW (2005) Remote and local SST forcing in shaping Asian-Australian monsoon anomalies. J Meteorol Soc Jpn 83:153–167CrossRefGoogle Scholar
  20. Liu Y, Ding Y (1992) Influence of El Niño on weather and climate in China. Acta Meteorol Sin 6:117–131Google Scholar
  21. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43CrossRefGoogle Scholar
  22. Ninomiya K, Murakami T (1987) The early summer rainy season (Baiu) over Japan. Chang C-P, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 93–121Google Scholar
  23. Rayner N et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. Google Scholar
  24. Rong XY, Zhang RH, Li T (2010) Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin Sci Bull 55:2458–2468CrossRefGoogle Scholar
  25. Song FF, Zhou TJ (2014) The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: does air–sea coupling improve the simulations? J Clim 27:8761–8777CrossRefGoogle Scholar
  26. Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885CrossRefGoogle Scholar
  27. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  28. Wang B, Wu R, Fu X (2000) Pacific-east Asian teleconnection: how does ENSO affect east Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  29. Wang XC, Liu YM, Wu GX, Lin SJ, Bao Q (2013) The application of flux-form semi-lagrangian transport scheme in a spectral atmosphere model. Adv Atmos Sci 30:89–100CrossRefGoogle Scholar
  30. Weng HY, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  31. Wu B, Zhou TJ (2016) Relationships between ENSO and the East Asian-western North Pacific monsoon: observations versus 18 CMIP5 models. Clim Dyn 46:729–743CrossRefGoogle Scholar
  32. Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758CrossRefGoogle Scholar
  33. Wu B, Zhou TJ, Li T (2009) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005CrossRefGoogle Scholar
  34. Wu B, Zhou TJ, Li T (2017a) Atmospheric dynamics and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Nino. Part I: maintenance mechanisms. J Clim 30:9621–9635CrossRefGoogle Scholar
  35. Wu B, Zhou TJ, Li T (2017b) Atmospheric dynamics and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Nino. Part II: formation processes. J Clim 30:9637–9650CrossRefGoogle Scholar
  36. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  37. Yang JL, Liu QY, Xie SP, Liu ZY, Wu LX (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. Google Scholar
  38. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  39. Yuan Y, Yang S, Zhang Z (2012) Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: possible effects of Indian Ocean SST. J Clim 25:7867–7883CrossRefGoogle Scholar
  40. Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the’86/87 and’91/92 events. J Meteorol Soc Jpn 74:49–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Feng
    • 1
    Email author
  • Wen Chen
    • 1
  • Hainan Gong
    • 1
  • Jun Ying
    • 2
  • Wenping Jiang
    • 3
    • 4
  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations