Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns

Abstract

Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.

This is a preview of subscription content, log in to check access.

Fig. 1

Figure reproduced from Agel et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    The 900–500 hPa layer is chosen as opposed to the more familiar 1000–500 hPa layer because MERRA does not include interpolated values below the lowest model sigma level, resulting in many missing values at 1000 hPa for the Northeast.

  2. 2.

    The CFSR CAPE field is used instead of calculation directly from MERRA due to the lack of MERRA interpolated values below 900 hPa for the Northeast.

References

  1. Agel L, Barlow M, Qian J-H, Colby F, Douglas E, Eichler T (2015) Climatology of daily precipitation and extreme precipitation events in the northeast United States. J Hydrometeorol 16:2537–2557. https://doi.org/10.1175/JHM-D-14-0147.1

    Article  Google Scholar 

  2. Agel L, Barlow M, Feldstein SB, Gutowski WJ (2017) Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim Dyn. https://doi.org/10.1007/s00382-017-3724-8

    Google Scholar 

  3. Berry G, Jakob C, Reeder M (2011) Recent global trends in atmospheric fronts. Geophys Res Lett 38:L21812. https://doi.org/10.1029/2011GL049481

    Google Scholar 

  4. Binder H, Boettcher M, Joos H, Wernli H (2016) The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J Atmos Sci 73:3997–4020. https://doi.org/10.1175/jas-d-15-0302.1

    Article  Google Scholar 

  5. Browning KA (1990) Organization of clouds and precipitation in extratropical cyclones. Extratropical cyclones: the Erik Palmén memorial volume. In: Newton CW, Holopainen EO (eds). American Meteorological Society, London, pp 129–153

  6. Catto JL, Pfahl S (2013) The importance of fronts for extreme precipitation. J Geophys Res Atmos 118:10,791–710,801. https://doi.org/10.1002/jgrd.50852

    Article  Google Scholar 

  7. Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23:1621–1635. https://doi.org/10.1175/2009jcli3318.1

    Article  Google Scholar 

  8. Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:L10805. https://doi.org/10.1029/2012GL051736

    Article  Google Scholar 

  9. Catto JL, Nicholls N, Jakob C, Shelton KL (2014) Atmospheric fronts in current and future climates. Geophys Res Lett 41:7642–7650. https://doi.org/10.1002/2014GL061943

    Article  Google Scholar 

  10. Catto JL, Madonna E, Joos H, Rudeva I, Simmonds I (2015) Global Relationship between fronts and warm conveyor belts and the impact on extreme precipitation. J Clim 28:8411–8429. https://doi.org/10.1175/jcli-d-15-0171.1

    Article  Google Scholar 

  11. Chen M, Xie P et al (2008) CPC unified gauge-based analysis of global daily precipitation. In: Western Pacific geophysics meeting, Cairns, Australia, 29 July–1 August 2008

  12. Collow ABM, Bosilovich MG, Koster RD (2016) Large-scale influences on summertime extreme precipitation in the northeastern United States. J Hydrometeorol 17:3045–3061. https://doi.org/10.1175/jhm-d-16-0091.1

    Article  Google Scholar 

  13. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  14. Diday E, Simon JC (1976) Clustering analysis. In: Fu KS (ed) Digital pattern recognition. Springer, Berlin, pp 47–94. https://doi.org/10.1007/978-3-642-96303-2_3

    Google Scholar 

  15. Dowdy AJ, Catto JL (2017) Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci Rep 7:40359 https://doi.org/10.1038/srep40359. https://www.nature.com/articles/srep40359#supplementary-information

  16. Easterling DR, Karl TR, Lawrimore JH, Del Greco SA (1999) United states historical climatology network daily temperature, precipitation, and snow data for 1871–1997. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. https://digital.library.unt.edu/ark:/67531/metadc735162/ORNL/CDIAC-118, http://cdiac.esd.ornl.gov/epubs/ndp/ushcn/ndp070.html

  17. Glisan JM, Gutowski WJ (2014) WRF winter extreme daily precipitation over the North American CORDEX Arctic. J Geophys Res Atmos 119:10738–10748. https://doi.org/10.1002/2014JD021676

    Article  Google Scholar 

  18. Grams CM et al (2011) The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. Q J R Meteorol Soc 137:2174–2193. https://doi.org/10.1002/qj.891

    Article  Google Scholar 

  19. Green JSA, Ludlam HF, McIlveen JFR (1966) Isentropic relative-flow analysis and the parcel theory. Q J R Meteorol Soc 92(392):210–219. https://doi.org/10.1002/qj.49709239204

    Article  Google Scholar 

  20. Groisman PY, Knight RW, Zolina OG (2013) Recent trends in regional and global extreme precipitation patterns. In: Sr RP, Hossain F (eds) Climate vulnerability: understanding and addressing threats to essential resources. Volume 5, vulerability of water resources to climate. Elsevier Publishing House, Amsterdam, pp 25–55

    Google Scholar 

  21. Grotjahn R et al (2016) North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim Dyn 46:1151–1184. https://doi.org/10.1007/s00382-015-2638-6

    Article  Google Scholar 

  22. Harrold TW (1973) Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q J R Meteorol Soc 99:232–251. https://doi.org/10.1002/qj.49709942003

    Article  Google Scholar 

  23. Hewson TD (1998) Objective fronts. Meteorol Appl 5:37–65. https://doi.org/10.1017/S1350482798000553

    Article  Google Scholar 

  24. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Massachusetts

    Google Scholar 

  25. Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. https://doi.org/10.1175/1520-0469(2002)059<1041:npotnh>2.0.co;2

    Article  Google Scholar 

  26. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946. https://doi.org/10.1002/qj.49711147002

    Article  Google Scholar 

  27. Kocin PJ, Uccellini LW (2004) Volume I: overview. Meteorological monographs, vol 54. American Meteor Society, pp 1–270

  28. Kohonen T (2001) Self-organizing maps. Springer, New York

    Google Scholar 

  29. Kunkel KE, Easterling DR, Kristovich DAR, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J Hydrometeorol 13:1131–1141. https://doi.org/10.1175/jhm-d-11-0108.1

    Article  Google Scholar 

  30. Kunkel K et al (2013) Regional climate trends and scenarios for the U.S. national climate assessment. Part 1. Climate of the northeast U.S. NOAA Technical Report NESDIS 142-1, pp 80

  31. Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592. https://doi.org/10.1175/MWR-D-12-00254.1

    Article  Google Scholar 

  32. Loikith PC, Broccoli AJ (2012) Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J Clim 25:7266–7281. https://doi.org/10.1175/jcli-d-11-00709.1

    Article  Google Scholar 

  33. Madonna E, Wernli H, Joos H, Martius O (2014) Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: climatology and potential vorticity evolution. J Clim 27:3–26. https://doi.org/10.1175/JCLI-D-12-00720.1

    Article  Google Scholar 

  34. Maglaras GJ, Waldstreicher JS, Kocin PJ, Gigi AF, Marine RA (1995) Winter weather forecasting throughout the eastern United States. Part I: an overview. Weather Forecast 10:5–20 https://doi.org/10.1175/1520-0434(1995)010<0005:WWFTTE>2.0.CO;2

    Article  Google Scholar 

  35. Melillo JM, Richmond TC, Yohe GW (2014) Climate change impacts in the United States: the third national climate assessment. US Global Change Research Program, pp 841. https://doi.org/10.7930/J0Z31WJ2

  36. Michelangeli P-A, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256. https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2

    Article  Google Scholar 

  37. Milrad SM, Atallah EH, Gyakum JR, Dookhie G (2014) Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Québec. Weather Forecast 29:419–444. https://doi.org/10.1175/WAF-D-13-00030.1

    Article  Google Scholar 

  38. Muller CJ, O’Gorman PA, Back LE (2011) Intensification of precipitation extremes with warming in a cloud-resolving model. J Clim 24:2784–2800

    Article  Google Scholar 

  39. Nielsen-Gammon JW (2001) A Visualization of the Global Dynamic Tropopause. Bull Am Meteorol Soc 82:1151–1167. https://doi.org/10.1175/1520-0477(2001)082<1151:AVOTGD>2.3.CO;2

    Article  Google Scholar 

  40. Pfahl S, Sprenger M (2016) On the relationship between extratropical cyclone precipitation and intensity. Geophys Res Lett 43:1752–1758. https://doi.org/10.1002/2016GL068018

    Article  Google Scholar 

  41. Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780. https://doi.org/10.1175/jcli-d-11-00705.1

    Article  Google Scholar 

  42. Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm Conveyor belts in the ERA-interim dataset (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27:27–40. https://doi.org/10.1175/JCLI-D-13-00223.1

    Article  Google Scholar 

  43. Pomroy HR, Thorpe AJ (2000) The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon Weather Rev 128:1817–1834. https://doi.org/10.1175/1520-0493(2000)128<1817:teadro>2.0.co;2

    Article  Google Scholar 

  44. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. https://doi.org/10.1175/jcli-d-11-00015.1

    Article  Google Scholar 

  45. Roller CD, Qian J-H, Agel L, Barlow M, Moron V (2016) Winter weather regimes in the northeast United States. J Clim 29:2963–2980. https://doi.org/10.1175/JCLI-D-15-0274.1

    Article  Google Scholar 

  46. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91:1015–1058. https://doi.org/10.1175/2010bams3001.1

    Article  Google Scholar 

  47. Schumacher RS, Johnson RH (2005) Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon Weather Rev 133:961–976. https://doi.org/10.1175/MWR2899.1

    Article  Google Scholar 

  48. Sprenger M, Wernli H (2015) The LAGRANTO Lagrangian analysis tool—version 2.0. 8. https://doi.org/10.5194/gmd-8-2569-2015

  49. Stoelinga MT (1996) A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon Weather Rev 124:849–874. https://doi.org/10.1175/1520-0493(1996)124<0849:apvbso>2.0.co;2

    Article  Google Scholar 

  50. Wernli H (1997) A Lagrangian-based analysis of extratropical cyclones. II: a detailed case-study. Q J R Meteorol Soc 123:1677–1706. https://doi.org/10.1002/qj.49712354211

    Article  Google Scholar 

  51. Wernli H, Davies HC (1997) A lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q J R Meteorol Soc 123:467–489. https://doi.org/10.1002/qj.49712353811

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Heini Wernli (ETH Zurich) for his constructive comments and suggestions. Funding provided by National Science Foundation (NSF Project #1623912) to LA and MB. HB is supported by the Swiss National Science Foundation (SNSF) via Grants 200020_146834/P2EZP2_175161. JC is supported by the National Science Foundation Division of Polar Programs (Grant PLR-1504361) and the National Science Foundation Large-Scale and Climate Dynamics Program (Grants AGS-1657748).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurie Agel.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agel, L., Barlow, M., Colby, F. et al. Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Clim Dyn 52, 1739–1760 (2019). https://doi.org/10.1007/s00382-018-4223-2

Download citation

Keywords

  • Large-scale Meteorological Patterns (LSMPs)
  • Extreme Precipitation
  • Warm Conveyor Belt (WCBs)
  • Low-level Moisture Convergence (LLMC)
  • Warm Front