Advertisement

Climate Dynamics

, Volume 52, Issue 3–4, pp 1739–1760 | Cite as

Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns

  • Laurie AgelEmail author
  • Mathew Barlow
  • Frank Colby
  • Hanin Binder
  • Jennifer L. Catto
  • Andrew Hoell
  • Judah Cohen
Article

Abstract

Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.

Notes

Acknowledgements

We are grateful to Heini Wernli (ETH Zurich) for his constructive comments and suggestions. Funding provided by National Science Foundation (NSF Project #1623912) to LA and MB. HB is supported by the Swiss National Science Foundation (SNSF) via Grants 200020_146834/P2EZP2_175161. JC is supported by the National Science Foundation Division of Polar Programs (Grant PLR-1504361) and the National Science Foundation Large-Scale and Climate Dynamics Program (Grants AGS-1657748).

Supplementary material

382_2018_4223_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 174 KB)
382_2018_4223_MOESM2_ESM.pdf (1.3 mb)
Supplementary material 2 (PDF 1310 KB)
382_2018_4223_MOESM3_ESM.pdf (1.1 mb)
Supplementary material 3 (PDF 1078 KB)

References

  1. Agel L, Barlow M, Qian J-H, Colby F, Douglas E, Eichler T (2015) Climatology of daily precipitation and extreme precipitation events in the northeast United States. J Hydrometeorol 16:2537–2557.  https://doi.org/10.1175/JHM-D-14-0147.1 CrossRefGoogle Scholar
  2. Agel L, Barlow M, Feldstein SB, Gutowski WJ (2017) Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim Dyn.  https://doi.org/10.1007/s00382-017-3724-8 Google Scholar
  3. Berry G, Jakob C, Reeder M (2011) Recent global trends in atmospheric fronts. Geophys Res Lett 38:L21812.  https://doi.org/10.1029/2011GL049481 Google Scholar
  4. Binder H, Boettcher M, Joos H, Wernli H (2016) The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J Atmos Sci 73:3997–4020.  https://doi.org/10.1175/jas-d-15-0302.1 CrossRefGoogle Scholar
  5. Browning KA (1990) Organization of clouds and precipitation in extratropical cyclones. Extratropical cyclones: the Erik Palmén memorial volume. In: Newton CW, Holopainen EO (eds). American Meteorological Society, London, pp 129–153Google Scholar
  6. Catto JL, Pfahl S (2013) The importance of fronts for extreme precipitation. J Geophys Res Atmos 118:10,791–710,801.  https://doi.org/10.1002/jgrd.50852 CrossRefGoogle Scholar
  7. Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23:1621–1635.  https://doi.org/10.1175/2009jcli3318.1 CrossRefGoogle Scholar
  8. Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:L10805.  https://doi.org/10.1029/2012GL051736 CrossRefGoogle Scholar
  9. Catto JL, Nicholls N, Jakob C, Shelton KL (2014) Atmospheric fronts in current and future climates. Geophys Res Lett 41:7642–7650.  https://doi.org/10.1002/2014GL061943 CrossRefGoogle Scholar
  10. Catto JL, Madonna E, Joos H, Rudeva I, Simmonds I (2015) Global Relationship between fronts and warm conveyor belts and the impact on extreme precipitation. J Clim 28:8411–8429.  https://doi.org/10.1175/jcli-d-15-0171.1 CrossRefGoogle Scholar
  11. Chen M, Xie P et al (2008) CPC unified gauge-based analysis of global daily precipitation. In: Western Pacific geophysics meeting, Cairns, Australia, 29 July–1 August 2008Google Scholar
  12. Collow ABM, Bosilovich MG, Koster RD (2016) Large-scale influences on summertime extreme precipitation in the northeastern United States. J Hydrometeorol 17:3045–3061.  https://doi.org/10.1175/jhm-d-16-0091.1 CrossRefGoogle Scholar
  13. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  14. Diday E, Simon JC (1976) Clustering analysis. In: Fu KS (ed) Digital pattern recognition. Springer, Berlin, pp 47–94.  https://doi.org/10.1007/978-3-642-96303-2_3 CrossRefGoogle Scholar
  15. Dowdy AJ, Catto JL (2017) Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci Rep 7:40359  https://doi.org/10.1038/srep40359. https://www.nature.com/articles/srep40359#supplementary-information
  16. Easterling DR, Karl TR, Lawrimore JH, Del Greco SA (1999) United states historical climatology network daily temperature, precipitation, and snow data for 1871–1997. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. https://digital.library.unt.edu/ark:/67531/metadc735162/ORNL/CDIAC-118, http://cdiac.esd.ornl.gov/epubs/ndp/ushcn/ndp070.html
  17. Glisan JM, Gutowski WJ (2014) WRF winter extreme daily precipitation over the North American CORDEX Arctic. J Geophys Res Atmos 119:10738–10748.  https://doi.org/10.1002/2014JD021676 CrossRefGoogle Scholar
  18. Grams CM et al (2011) The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. Q J R Meteorol Soc 137:2174–2193.  https://doi.org/10.1002/qj.891 CrossRefGoogle Scholar
  19. Green JSA, Ludlam HF, McIlveen JFR (1966) Isentropic relative-flow analysis and the parcel theory. Q J R Meteorol Soc 92(392):210–219.  https://doi.org/10.1002/qj.49709239204 CrossRefGoogle Scholar
  20. Groisman PY, Knight RW, Zolina OG (2013) Recent trends in regional and global extreme precipitation patterns. In: Sr RP, Hossain F (eds) Climate vulnerability: understanding and addressing threats to essential resources. Volume 5, vulerability of water resources to climate. Elsevier Publishing House, Amsterdam, pp 25–55CrossRefGoogle Scholar
  21. Grotjahn R et al (2016) North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim Dyn 46:1151–1184.  https://doi.org/10.1007/s00382-015-2638-6 CrossRefGoogle Scholar
  22. Harrold TW (1973) Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q J R Meteorol Soc 99:232–251.  https://doi.org/10.1002/qj.49709942003 CrossRefGoogle Scholar
  23. Hewson TD (1998) Objective fronts. Meteorol Appl 5:37–65.  https://doi.org/10.1017/S1350482798000553 CrossRefGoogle Scholar
  24. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, MassachusettsGoogle Scholar
  25. Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. https://doi.org/10.1175/1520-0469(2002)059<1041:npotnh>2.0.co;2CrossRefGoogle Scholar
  26. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946.  https://doi.org/10.1002/qj.49711147002 CrossRefGoogle Scholar
  27. Kocin PJ, Uccellini LW (2004) Volume I: overview. Meteorological monographs, vol 54. American Meteor Society, pp 1–270Google Scholar
  28. Kohonen T (2001) Self-organizing maps. Springer, New YorkCrossRefGoogle Scholar
  29. Kunkel KE, Easterling DR, Kristovich DAR, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J Hydrometeorol 13:1131–1141.  https://doi.org/10.1175/jhm-d-11-0108.1 CrossRefGoogle Scholar
  30. Kunkel K et al (2013) Regional climate trends and scenarios for the U.S. national climate assessment. Part 1. Climate of the northeast U.S. NOAA Technical Report NESDIS 142-1, pp 80Google Scholar
  31. Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592.  https://doi.org/10.1175/MWR-D-12-00254.1 CrossRefGoogle Scholar
  32. Loikith PC, Broccoli AJ (2012) Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J Clim 25:7266–7281.  https://doi.org/10.1175/jcli-d-11-00709.1 CrossRefGoogle Scholar
  33. Madonna E, Wernli H, Joos H, Martius O (2014) Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: climatology and potential vorticity evolution. J Clim 27:3–26.  https://doi.org/10.1175/JCLI-D-12-00720.1 CrossRefGoogle Scholar
  34. Maglaras GJ, Waldstreicher JS, Kocin PJ, Gigi AF, Marine RA (1995) Winter weather forecasting throughout the eastern United States. Part I: an overview. Weather Forecast 10:5–20 https://doi.org/10.1175/1520-0434(1995)010<0005:WWFTTE>2.0.CO;2CrossRefGoogle Scholar
  35. Melillo JM, Richmond TC, Yohe GW (2014) Climate change impacts in the United States: the third national climate assessment. US Global Change Research Program, pp 841.  https://doi.org/10.7930/J0Z31WJ2
  36. Michelangeli P-A, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256. https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2CrossRefGoogle Scholar
  37. Milrad SM, Atallah EH, Gyakum JR, Dookhie G (2014) Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Québec. Weather Forecast 29:419–444.  https://doi.org/10.1175/WAF-D-13-00030.1 CrossRefGoogle Scholar
  38. Muller CJ, O’Gorman PA, Back LE (2011) Intensification of precipitation extremes with warming in a cloud-resolving model. J Clim 24:2784–2800CrossRefGoogle Scholar
  39. Nielsen-Gammon JW (2001) A Visualization of the Global Dynamic Tropopause. Bull Am Meteorol Soc 82:1151–1167. https://doi.org/10.1175/1520-0477(2001)082<1151:AVOTGD>2.3.CO;2CrossRefGoogle Scholar
  40. Pfahl S, Sprenger M (2016) On the relationship between extratropical cyclone precipitation and intensity. Geophys Res Lett 43:1752–1758.  https://doi.org/10.1002/2016GL068018 CrossRefGoogle Scholar
  41. Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780.  https://doi.org/10.1175/jcli-d-11-00705.1 CrossRefGoogle Scholar
  42. Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm Conveyor belts in the ERA-interim dataset (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27:27–40.  https://doi.org/10.1175/JCLI-D-13-00223.1 CrossRefGoogle Scholar
  43. Pomroy HR, Thorpe AJ (2000) The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon Weather Rev 128:1817–1834. https://doi.org/10.1175/1520-0493(2000)128<1817:teadro>2.0.co;2CrossRefGoogle Scholar
  44. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648.  https://doi.org/10.1175/jcli-d-11-00015.1 CrossRefGoogle Scholar
  45. Roller CD, Qian J-H, Agel L, Barlow M, Moron V (2016) Winter weather regimes in the northeast United States. J Clim 29:2963–2980.  https://doi.org/10.1175/JCLI-D-15-0274.1 CrossRefGoogle Scholar
  46. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91:1015–1058.  https://doi.org/10.1175/2010bams3001.1 CrossRefGoogle Scholar
  47. Schumacher RS, Johnson RH (2005) Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon Weather Rev 133:961–976.  https://doi.org/10.1175/MWR2899.1 CrossRefGoogle Scholar
  48. Sprenger M, Wernli H (2015) The LAGRANTO Lagrangian analysis tool—version 2.0. 8.  https://doi.org/10.5194/gmd-8-2569-2015
  49. Stoelinga MT (1996) A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon Weather Rev 124:849–874. https://doi.org/10.1175/1520-0493(1996)124<0849:apvbso>2.0.co;2CrossRefGoogle Scholar
  50. Wernli H (1997) A Lagrangian-based analysis of extratropical cyclones. II: a detailed case-study. Q J R Meteorol Soc 123:1677–1706.  https://doi.org/10.1002/qj.49712354211 CrossRefGoogle Scholar
  51. Wernli H, Davies HC (1997) A lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q J R Meteorol Soc 123:467–489.  https://doi.org/10.1002/qj.49712353811 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental, Earth, and Atmospheric SciencesUniversity of Massachusetts LowellLowellUSA
  2. 2.Intercampus Marine Science Graduate ProgramUniversity of Massachusetts LowellLowellUSA
  3. 3.Climate Change InitiativeUniversity of Massachusetts LowellLowellUSA
  4. 4.Institute for Atmospheric and Climate Science, ETH ZurichZurichSwitzerland
  5. 5.Laboratoire de Météorologie Dynamique/IPSLÉcole Normale SupérieureParisFrance
  6. 6.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
  7. 7.NOAA/ESRL Physical Sciences DivisionBoulderUSA
  8. 8.Atmospheric and Environmental ResearchLexingtonUSA

Personalised recommendations