Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki

  • Xin Wang
  • Mengyan Chen
  • Chunzai Wang
  • Sang-Wook Yeh
  • Wei Tan


Previous observational studies have documented that the occurrence frequency of El Niño Modoki is closely linked to the North Pacific Oscillation (NPO). The present paper evaluates the relationships between the frequency of El Niño Modoki and the NPO in the historical runs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and examines the related physical processes. It is found that six of 25 CMIP5 models can reproduce both the spatial patterns of the NPO and El Niño Modoki. Four of these six models exhibit good performance in simulating the positive correlation between the NPO index and the frequency of El Niño Modoki. The analyses further show that the key physical processes determining the relationships between the NPO and the frequency of El Niño Modoki are the intensity of wind-evaporation-SST (WES) feedback in the subtropical northeastern North Pacific. This study enhances the understanding of the connections between the North Pacific mid-latitude climate system and El Niño Modoki, and has an important implication for the change of El Niño Modoki under global warming. If global warming favors to produce an oceanic and atmospheric pattern similar to the positive phase of the NPO in the North Pacific, more El Niño Modoki events will occur in the tropical Pacific with the assistance of the WES feedback processes.


El Niño Modoki North Pacific Oscillation CMIP5 climate models 



This work was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDA11010403), the National Natural Science Foundation of China (Grant nos. 41422601, 41376025 and 41731173), the Leading Talents of Guangdong Province Program, the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, the National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-04). SWY was supported by the Korea Meteorological Administration Research and Development Program under grant KMIPA2015-1042.


  1. Anderson BT, Furtado JC, Cobb KM, Di Lorenzo E (2013b) Extratropical forcing of El Niño–Southern Oscillation asymmetry. Geophys Res Lett 40:4916–4921CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  3. Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the north Pacific. Geophys Res Lett 30:2183. CrossRefGoogle Scholar
  4. Bretherton CS, Widmann M, Dymnidov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  5. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño–Southern Oscillation. Geophys Res Lett 34:L16608. CrossRefGoogle Scholar
  6. Chiang J, Vimont D (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  7. Deser C, Phillips AS, Tomas RA et al (2012) ENSO and Pacific decadal variability in community climate system model version 4. J Clim 25:2622–2651CrossRefGoogle Scholar
  8. Di Lorenzo E, Schneider N, Cobb KM et al (2008) North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607CrossRefGoogle Scholar
  9. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the north Pacific Ocean. Nat Geosci 3:762–765CrossRefGoogle Scholar
  10. Ding RQ, Li JP, Tseng YH, Sun C, Guo Y (2015a) The Victoria mode in the north Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120:27–45. CrossRefGoogle Scholar
  11. Ding RQ, Li JP, Tseng YH (2015b) The impact of south Pacific extratropical forcing on ENSO and comparisons with the north Pacific. Clim Dyn 44:2017–2034. CrossRefGoogle Scholar
  12. Ding RQ, Li JP, Tseng YH, Sun C, Zheng F (2016) Linking a sea level pressure anomaly dipole over north America to the central Pacific El Niño. Clim Dyn. Google Scholar
  13. Ding RQ, Li JP, Tseng YH, Sun C, Xie F (2017) Joint impact of north and south Pacific extratropical atmospheric variability on the onset of ENSO events. J Geophys Res Atmos. Google Scholar
  14. Furtado JC, Di Lorenzo E, Anderson BT, Schneider N (2012) Linkages between the north Pacific oscillation and central tropical Pacific SSTs at low frequencies. Clim Dyn 39:2833–2846CrossRefGoogle Scholar
  15. Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116CrossRefGoogle Scholar
  16. Jin D, Kirtman BP (2009) Why the southern hemisphere ENSO responses lead ENSO? J Geophys Res 114:D23101. CrossRefGoogle Scholar
  17. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  18. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  19. Kim ST, Yu JY (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. Google Scholar
  20. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 325:77–80CrossRefGoogle Scholar
  21. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  22. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705CrossRefGoogle Scholar
  23. Lin CY, Yu JY, Hsu HH (2015) CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int J Climatol 35:2352–2358. CrossRefGoogle Scholar
  24. Ma J, Yu JY (2014) Linking centennial surface warming patterns in the equatorial Pacific to the relative strengths of the Walker and Hadley circulations. J Atmos Sci 71:3454–3464CrossRefGoogle Scholar
  25. Ma J, Xie SP, Xu H (2017) Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J Clim 30(22):9167–9181CrossRefGoogle Scholar
  26. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  27. Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656CrossRefGoogle Scholar
  28. Park JY, Yeh SW, Kug JS, Yoon J (2013) Favorable connections between seasonal footprinting mechanism and El Niño. Clim Dyn 40:1169–1181CrossRefGoogle Scholar
  29. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. CrossRefGoogle Scholar
  30. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. CrossRefGoogle Scholar
  31. Rogers JC (1981) The north Pacific oscillation. J Climatol 1(1):39–57CrossRefGoogle Scholar
  32. Tan W, Wang X, Wang WQ, Wang CZ, Zuo JC (2016) Different responses of sea surface temperature in the south China Sea to various El Niño vvents during boreal autumn. J Clim 29:1127–1142CrossRefGoogle Scholar
  33. Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22:3167–3174CrossRefGoogle Scholar
  34. Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885CrossRefGoogle Scholar
  35. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926. CrossRefGoogle Scholar
  36. Vimont DJ, Wallace JM, Battisti DS (2003a) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675CrossRefGoogle Scholar
  37. Vimont DJ, Battisti DS, Hirst AC (2003b) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16:2653–2667CrossRefGoogle Scholar
  38. Walker GT, Bliss EW (1932) World weather V. Mem Roy Meteor Soc 4:53–84Google Scholar
  39. Wang CZ, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J Clim 26:1322–1338CrossRefGoogle Scholar
  40. Wang X, Wang CZ (2014) Different impacts of various El Niño events on the Indian Ocean dipole. Clim Dyn 42:991–1005CrossRefGoogle Scholar
  41. Wang X, Zhou W, Li C, Wang D (2014) Comparison of the impact of two types of El Niño on tropical cyclone genesis over the south China Sea. Int J Climatol 34:2651–2660. CrossRefGoogle Scholar
  42. Wang CZ, Deser C, Yu JY, Di Nezio P, Clement A (2016) El Niño-Southern Oscillation (ENSO): a review. In: Glynn P, Manzello D, Enochs I (eds) Coral reefs of the eastern Pacific. Springer, Berlin, pp 85–106Google Scholar
  43. Weng H, Ashok K, Behera SK, Rao SA (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  44. Xie SP, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350CrossRefGoogle Scholar
  45. Xu K, Tam C, Zhu C, Liu B, Wang W (2016) CMIP5 Projections of two types of El Niño and their related tropical precipitation in the 21st century. J Clim. Google Scholar
  46. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514. CrossRefGoogle Scholar
  47. Yeh SW, Wang X, Wang CZ, Dewitte B (2015) On the relationship between the north Pacific climate variability and the central Pacific El Niño. J Clim 28:663–677. CrossRefGoogle Scholar
  48. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106CrossRefGoogle Scholar
  49. Yu JY, Kim ST (2010) Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37(15):L15705CrossRefGoogle Scholar
  50. Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720. CrossRefGoogle Scholar
  51. Yu JY, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33(8):2105–2112CrossRefGoogle Scholar
  52. Yu JY, Kao HY, Lee T (2010) Subtropical-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884. CrossRefGoogle Scholar
  53. Yu JY, Lu MM, Kim ST (2012a) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7:034025. CrossRefGoogle Scholar
  54. Yu JY, Zou Y, Kim ST, Lee T (2012b) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. CrossRefGoogle Scholar
  55. Yu JY, Wang X, Yang S, Paek H, Chen MY (2017) Changing El Nino-southern oscillation and associated climate extremes. Book chapter in climate extremes: patterns and mechanisms. In: Wang S-Y, Jin-Ho Y, Chris F, Gillies RR (eds) AGU geophysical monograph series, vol 226, pp 3–38. AGU, Washington, DCGoogle Scholar
  56. Yuan Y, Yang S (2012) Impacts of different types of El Niño on east Asian climate: focus on ENSO cycles. J Clim 25:7702–7722CrossRefGoogle Scholar
  57. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of Marine Sciences and Convergent TechnologyHanyang UniversityAnsanSouth Korea
  5. 5.First Institute of OceanographyState Oceanic AdministrationQingdaoPeople’s Republic of China

Personalised recommendations