Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

Abstract

A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960–2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land–atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Alexander L (2016) Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim Extremes 11:4–16

    Article  Google Scholar 

  2. Angelil O, Perkins-Kirkpatrick S, Alexander LV et al (2016) Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Weather Clim Extremes 13:35–43

    Article  Google Scholar 

  3. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic oscillation from the stratosphere to the troposphere. J Geophys Res Atmos 104(D24):30937–30946

    Article  Google Scholar 

  4. Bellprat O, Doblas-Reyes F (2016) Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophys Res Lett. https://doi.org/10.1002/2015GL067189

    Article  Google Scholar 

  5. Bellprat O, Kotlarski S, Lüthi D, Schär C (2014) Physical constraints for temperature biases in climate models. Geophys Res Lett 40(15):4042–4047

    Article  Google Scholar 

  6. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G et al (2013) Chapter 10—detection and attribution of climate change: from global to regional. In: Climate change 2013: The physical science basis. IPCC working group I contribution to AR5. Cambridge University Press, Cambridge

    Google Scholar 

  7. Blauhut V, Gudmundsson L, Stahl K (2015) Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts. Environ Res Lett 10:014008

    Article  Google Scholar 

  8. Burke C, Stott PA, Sun Y, Ciavarella A (2016) Attribution of extreme rainfall in southeast china during, May 2015, In “explaining extremes of 2014 from a climate perspective”. Bull Am Meteor Soc 97(12):S92–S96

    Article  Google Scholar 

  9. Cassou C, Terray L, Phillips AS (2015) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Google Scholar 

  10. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:L20704. https://doi.org/10.1029/2010GL044613

    Article  Google Scholar 

  11. Ciavarella A, Christidis N, Andrews M, Groenendijk M, Rostron J, Elkington M, Burke C, Lott FC, Stott PA (2018) Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Weather Clim Extremes, Special Issue: First results from the C20C+ Detection and Attribution Project (in press)

  12. Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res Atmos 106(D21):27307–27322

    Article  Google Scholar 

  13. Christiansen B, Alvarez-Castro C, Christidis N, Ciavarella A, Colfescu I, Cowan T, Edenf J, Hauserg M, Hempelmannb N, Klehmeth K, Lott F, Nangini C, Jan van Oldenborgh G, Orth R, Stott P, Tett S, Vautard R, Wilcox L, Yioub P (2018) Was the Cold European Winter of 2009/10 Modified by Anthropogenic Climate Change? An Attribution Study. J Clim 31(9):3387–3410

    Google Scholar 

  14. Christidis N, Stott PA, Scaife A, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013a) A new HadGEM3-A based system for attribution of weather and climate-related extreme events. J Clim 26:2756–2783

    Article  Google Scholar 

  15. Christidis N, Stott PA, Karoly DJ, Ciavarella A (2013b) An attribution study of the heavy rainfall over eastern Australia in March 2012, In “explaining extremes of 2012 from a climate perspective”. Bull Am Meteor Soc

  16. Christidis N, Stott PA, Ciavarella A (2014) The effect of anthropogenic climate change on the cold spring of 2013 in the UK. In “explaining extremes of 2013 from a climate perspective”. Bull Am Meteor Soc 95(9):S79–S82

    Google Scholar 

  17. Christidis N, McCarthy M, Ciavarella A, Stott PA (2016) Human contribution to the record sunshine of 2014/15 in the United Kingdom, in “explaining extremes of 2015 from a climate perspective”. Bull Am Meteor Soc

  18. Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, London

    Google Scholar 

  19. Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne SI (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13:1739–1747

    Article  Google Scholar 

  20. Cowan T, Purich A, Perkins S, Pezza A, Boschat G, Sadler K (2014) More frequent, longer, and hotter heat waves for australia in the twenty-first century. J Clim 27:5851–5871. https://doi.org/10.1175/JCLI-D-14-00092.1

    Article  Google Scholar 

  21. Cowan T, Hegerl G, Colfescu I, Purich A, Boshcat G (2017) Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl. J Clim. https://doi.org/10.1175/JCLI-D-16-0436.1 (in press)

    Article  Google Scholar 

  22. Deser C, Hurrell JW, Phillips AS (2016) The role of the North Atlantic oscillation in European climate projections. Clim Dyn. https://doi.org/10.1007/s00382-016-3502-z

    Article  Google Scholar 

  23. Eden JM, Wolter K, Otto FEL, Oldenborgh GJ van (2016) Multi-method attribution analysis of extreme precipitation in Boulder, Colorado. Env Res Lett 11:124009. https://doi.org/10.1088/1748-9326/11/12/124009

    Article  Google Scholar 

  24. Eden JM, Bellprat O, Kew S, Lenderink G, Manola I, Omrani H, Oldenborgh GJ van (2017) Extreme precipitation in the Netherlands: an event attribution case study. Clim Dyn (submitted)

  25. Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett 39(19). https://doi.org/10.1029/2012GL052730

  26. Geyer B (2014) High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2. Earth Syst Sci Data 6:147–164

    Article  Google Scholar 

  27. Hauser M, Orth R, Seneviratne SI (2016) Role of soil moisture versus recent climate change for the 2010 heat wave in Russia. Geophys Res Lett 43:2819–2826. https://doi.org/10.1002/2016GL068036

    Article  Google Scholar 

  28. Hauser M, Gudmundsson L, Orth R, Jézéquel A, Haustein K, Vautard R, van Oldenborgh GJ, Seneviratne SI (2017) Methods and model dependency of extreme event attribution: the 2015 European drought. Earth’s Future 5(10):1034–1043

    Article  Google Scholar 

  29. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119

    Article  Google Scholar 

  30. Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. Wiley Interdiscip Rev Clim Change 2(4):570–591

    Article  Google Scholar 

  31. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21

    Article  Google Scholar 

  32. Hollander M, Wolfe DA (1999) Nonparametric statistical methods. John Wiley, Hoboken, p 787

    Google Scholar 

  33. Hünicke B, Zorita E et al (2015) The BACC II author team, second assessment of climate change for the Baltic Sea basin, regional climate studies. https://doi.org/10.1007/978-3-319-16006-1$49

  34. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. American Geophysical Union, Washington, DC, pp 1–35

    Google Scholar 

  35. Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo K-O, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque J-F, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chin L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  36. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  37. Kapitza H (2008) Mops—a morphodynamical prediction system on cluster computers. In: Laginha JM, Palma M, Amestoy PR, Dayde M, Mattoso M, Lopez J (eds) High performance computing for computational science—VECPAR 2008. Springer, Berlin, pp 63–68 (Lecture Notes in Computer Science)

    Google Scholar 

  38. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 953–1028. https://doi.org/10.1017/CBO9781107415324.023

    Google Scholar 

  39. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  40. Krueger O, Hegerl GC, Tett SF (2015) Evaluation of mechanisms of hot and cold days in climate models over Central Europe. Environ Res Lett 10(1):014002

    Article  Google Scholar 

  41. Legras B, Ghil M (1985) Persistent anomalies, blocking and variations in atmospheric predictability. J Atmos Sci 42:433–471

    Article  Google Scholar 

  42. Lott FC, Stott PA (2016) Evaluating simulated fraction of attributable risk using climate observations. J Clim 29(12):4565–4575

    Article  Google Scholar 

  43. Lott F, Christidis N, Stott PA (2013) Can the 2011 East African drought be attributed to human-induced climate change? Geophys Res Lett 40:1177–1181

    Article  Google Scholar 

  44. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, vol 17. American Meteorological Society, Boston, pp 179–183

    Google Scholar 

  45. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi-stationarity. J Atmos Sci 52:1237–1256

    Article  Google Scholar 

  46. Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Fisher JB, Jung M, Ludwig F, Maignan F, Miralles D, McCabe MF, Reichstein M, Sheffield J, Wang KC, Wood EF, Zhang Y, Seneviratne SI (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci 17:3707–3720

    Article  Google Scholar 

  47. National Academies of Sciences, Engineering, and Medicine (2016) Attribution of extreme weather events in the context of climate change. National Academies Press

  48. Orsolini YJ, Senan R, Balsamo G, Doblas-Reyes FJ, Vitart F, Weisheimer A, Carrasco A, Benestad RE (2013) Impact of snow initialization on sub-seasonal forecasts. Clim Dyn 41:1969–1982. https://doi.org/10.1007/s00382-013-1782-0

    Article  Google Scholar 

  49. Orth R, Seneviratne SI (2015) Introduction of a simple-model-based land surface dataset for Europe. Environ Res Lett 10:044,012

    Article  Google Scholar 

  50. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385

    Article  Google Scholar 

  51. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714. https://doi.org/10.1029/2012GL053361

    Article  Google Scholar 

  52. Pezza AB, van Rensch P, Cai W (2012) Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Clim Dyn 38:209–224. https://doi.org/10.1007/s00382-011-1016-2

    Article  Google Scholar 

  53. Philip S, Kew SF, van Oldenborgh GJ, Aalbers E, Vautard R, Otto F, Haustein K, Habets F, Singh R, Cullen H (2017) Validation of a rapid attribution of the May/June 2016 flood-inducing precipitation in France to climate change. Clim Dyn (submitted)

  54. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2:736–741

    Article  Google Scholar 

  55. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  56. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM), editorial. Meteorol Z 12(4):347–348

    Article  Google Scholar 

  57. Rosenzweig C, Iglesias A, Yang X (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104

    Article  Google Scholar 

  58. Schaller N, Kay AL, Lamb R, Massey NR, van Oldenborgh G-J, Otto FEL, Sparrow SN, Vautard R, Yiou P, Bowery A, Crooks SM, Huntingford C, Ingram W, Jones R, Legg T, Miller J, Skeggs J, Wallom D, Wilson S, Allen MR (2015) Human influence on climate in the 2014 Southern England winter floods and their impacts. Nat Clim Change. https://doi.org/10.1038/nclimate2927

    Article  Google Scholar 

  59. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:3–4, 125–161

    Article  Google Scholar 

  60. Seneviratne SI et al (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge Univ. Press, Cambridge, pp 109–230

    Google Scholar 

  61. Seneviratne SI, Donat M, Pitman AJ, Knutti R, Wilby RL (2016) Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529:477–483

    Article  Google Scholar 

  62. Sippel S, Otto FEL, Forkel M, Allen MR, Guillod BP, Heimann M, Reichstein M, Seneviratne SI, Thonicke K, Mahecha MD (2016) A novel bias correction methodology for climate impact simulations. Earth Syst Dyn 7:71–88. https://doi.org/10.5194/esd-7-71-2016

    Article  Google Scholar 

  63. Stegehuis A, Vautard R, Ciais P, Teuling R, Jung M, Yiou P (2013) Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn 41:455–477

    Article  Google Scholar 

  64. Stott PA, Christidis N, Otto F, Sun Y, Vanderlinden J-P, van Oldenborgh G-J, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. WIREs Clim Change 7:23–41

    Article  Google Scholar 

  65. Sztobryn M, Stigge H-J, Wiebliński D, Weidig B, Stanislawczyk I, Kańska A, Krzysztofik B, Kowalska B, Letkiewicz B, Mykita M (2005) Storm surges in the Southern Baltic Sea (Western and Central Parts), Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 39

  66. University of East Anglia Climatic Research Unit, Harris IC, Jones PD (2015) CRU TS3.23: climatic research unit (CRU) time-series (TS) version 3.23 of high resolution gridded data of month-by-month variation in climate (Jan 1901–Dec 2014). Centre Environ Data Anal. https://doi.org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5

    Article  Google Scholar 

  67. van Oldenborgh GJ, Drijfhout S, Ulden AV, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5(1):1–12

    Article  Google Scholar 

  68. van Haren R, van Oldenborgh GJ, Lenderink G, Collins M, Hazeleger W (2013) SST and circulation trend biases cause an underestimation of European precipitation trends. Clim Dyn 40(1–2):1–20

    Article  Google Scholar 

  69. van Oldenborgh GJ, Reyes FD, Drijfhout SS, Hawkins E (2013) Reliability of regional climate model trends. Environ Res Lett 8(1):014055

    Article  Google Scholar 

  70. Vautard R, Legras B (1988) On the source of midlatitude low-frequency variability. Part II: nonlinear equilibration of weather regimes. J Atmos Sci 45:2845–2867

    Article  Google Scholar 

  71. Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett 34:L07711. https://doi.org/10.1029/2006GL028001

    Article  Google Scholar 

  72. Wilcox LJ, Yiou P, Hauser M, Lott FC, van Oldenborgh GJ, Colfescu I, Dong B, Hegerl G, Shaffrey L, Sutton R (2017) Multiple perspectives on the attribution of the extreme European summer of 2012 to climate change. Clim Dyn. https://doi.org/10.1007/s00382-017-3822-7 (First Online)

    Article  Google Scholar 

  73. Williams KD, Harris CM, Bodas-Salcedo A, Camp J, Comer RE, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson S, Masato G, Milton SF, Roberts MJ, Rowell DP, Sanchez C, Shelly A, Sinha B, Walters DN, West A, Woollings T, Xavier PK (2015) The met office global coupled model 2.0 (GC2) configuration. Geosci Model Dev 8:1509–1524

    Article  Google Scholar 

  74. Zhao Y, Sultan B, Vautard R, Braconnot P, Wang HJ, Ducharne A (2016) Potential escalation of heat-related working costs with climate and socio-economic changes in China. Proc Natl Acad Sci 113:4640–4645

    Article  Google Scholar 

Download references

Acknowledgements

This study was part of the European Climate and weather Events: Interpretation and Attribution (EUCLEIA) FP7 SPACE project, Grant agreement no 607085, and concerned principally its Work Package 6 (Evaluation and diagnostics). NC and AC, FL and PS were also supported by the Joint BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Vautard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4887 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vautard, R., Christidis, N., Ciavarella, A. et al. Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe. Clim Dyn 52, 1187–1210 (2019). https://doi.org/10.1007/s00382-018-4183-6

Download citation

Keywords

  • Weather Regimes
  • Event Attribution
  • Storm Surge
  • Summer Heat Waves
  • Cold Spells