Skip to main content

Impact of ENSO longitudinal position on teleconnections to the NAO

Abstract

While significant improvements have been made in understanding how the El Niño–Southern Oscillation (ENSO) impacts both North American and Asian climate, its relationship with the North Atlantic Oscillation (NAO) remains less clear. Observations indicate that ENSO exhibits a highly complex relationship with the NAO-associated atmospheric circulation. One critical contribution to this ambiguous ENSO/NAO relationship originates from ENSO’s diversity in its spatial structure. In general, both eastern (EP) and central Pacific (CP) El Niño events tend to be accompanied by a negative NAO-like atmospheric response. However, for two different types of La Niña the NAO response is almost opposite. Thus, the NAO responses for the CP ENSO are mostly linear, while nonlinear NAO responses dominate for the EP ENSO. These contrasting extra-tropical atmospheric responses are mainly attributed to nonlinear air-sea interactions in the tropical eastern Pacific. The local atmospheric response to the CP ENSO sea surface temperature (SST) anomalies is highly linear since the air-sea action center is located within the Pacific warm pool, characterized by relatively high climatological SSTs. In contrast, the EP ENSO SST anomalies are located in an area of relatively low climatological SSTs in the eastern equatorial Pacific. Here only sufficiently high positive SST anomalies during EP El Niño events are able to overcome the SST threshold for deep convection, while hardly any anomalous convection is associated with EP La Niña SSTs that are below this threshold. This ENSO/NAO relationship has important implications for NAO seasonal prediction and places a higher requirement on models in reproducing the full diversity of ENSO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  2. Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  3. Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM (2009) Stratospheric communication of El Niño teleconnections to European winter. J Clim 22:4083–4096

    Article  Google Scholar 

  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  5. Brönnimann S (2007a) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003. https://doi.org/10.1029/2006RG000199

    Article  Google Scholar 

  6. Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007b) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197

    Article  Google Scholar 

  7. Butler AH, Polvani LM, Deser C (2014) Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ Res Lett 9:024014. https://doi.org/10.1088/1748-9326/9/2/024014

    Article  Google Scholar 

  8. Cassou C, Terray L (2001) Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: a study with the ARPEGE model. J Clim 14:4266–4291

    Article  Google Scholar 

  9. Castanheira JM, Graf HF (2003) North Pacific–North Atlantic relationships under stratospheric control? J Geophys Res 108:4036. https://doi.org/10.1029/2002JD002754

    Article  Google Scholar 

  10. Curtis S, Hastenrath S (1995) Forcing of anomalous sea-surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100C:15835–15847

    Article  Google Scholar 

  11. Dong BW, Sutto RT, Jewson SP, O’Neill A, Slingo JM (2000) Predictable winter climate in the North Atlantic sector during the 1997–1999 ENSO cycle. Geophys Res Lett 27:985–988

    Article  Google Scholar 

  12. Driscoll S, Bozzo A, Gray LG, Robock A, Stenchikov G (2012) Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res 117:127–135

    Article  Google Scholar 

  13. Drouard M, Riviere G, Arbogast P (2015) The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J Clim 28:3957–3976

    Article  Google Scholar 

  14. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res 113:D01103. https://doi.org/10.1029/2007JD008470

    Article  Google Scholar 

  15. Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over South China. J Geophys Res 116:D13102. https://doi.org/10.1029/2010JD015160

    Article  Google Scholar 

  16. Feng J, Li JP (2013) Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J Clim 26:4773–4789

    Article  Google Scholar 

  17. Feng J, Wang L, Chen W, Fong SK, Leong KC (2010) Different impacts of two types of Pacific Ocean warming on Southeast Asia rainfall during boreal winter. J Geophys Res 115:D24122. https://doi.org/10.1029/2010JC014761

    Article  Google Scholar 

  18. Feng J, Li JP, Zheng F, Xie F, Sun C (2016) Contrasting impacts of developing phases of two types of El Niño on southern China rainfall. J Meteor Soc Japan 94:359–370

    Article  Google Scholar 

  19. Fraedrich K (1994) ENSO impact on Europe?—a review. Tellus Ser A 46:541–552

    Article  Google Scholar 

  20. Fraedrich K, Muller K (1992) Climate anomalies in Europe associated with ENSO extremes. Int J Climatol 12:25–31

    Article  Google Scholar 

  21. Garfinkel CI, Hartmann DL (2010) Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J Geophys Res 115:D20116. https://doi.org/10.1029/2010JD014181

    Article  Google Scholar 

  22. Gouirand I, Moron V (2003) Variability of the impact of El Niño–Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March (1874–1996). Int J Climatol 23:1549–1566

    Article  Google Scholar 

  23. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J Geophys Res 117:D01102

    Article  Google Scholar 

  24. Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern Oscillation. J Clim 5:577–593

    Article  Google Scholar 

  25. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  26. Huang RH, Wu YF (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32

    Article  Google Scholar 

  27. Hurrell JW (1995) Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 269:676–679

    Article  Google Scholar 

  28. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36

    Article  Google Scholar 

  29. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  30. Jin FF, An SI, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30:1120. https://doi.org/10.1029/2002GL016356

    Article  Google Scholar 

  31. Jones PD, Osborn TJ, Briffa KR (2003) Pressure-based measurements of the North Atlantic Oscillation (NAO): a comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. AGU Geophys Monogr 34:51–62

    Google Scholar 

  32. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

    Article  Google Scholar 

  33. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  34. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  35. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool ElNiño. J Clim 22:1499–1515

    Article  Google Scholar 

  36. Kumar A, Hoerling MP (1998) Annual cycle of Pacific/North American seasonal predictability associated with different phases of ENSO. J Clim 11:3295–3308

    Article  Google Scholar 

  37. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. https://doi.org/10.1029/2005GL022738

    Article  Google Scholar 

  38. Lee SK, Wang C, Enfield DB (2010) On the impact of central Pacific warming event on Atlantic tropical storm activity. Geophys Res Lett 37:L17702. https://doi.org/10.1029/2010GL044459

    Google Scholar 

  39. Li Y, Lau NC (2012a) Impact of ENSO in the atmospheric variability over the North Atlantic in late winter—role of transient eddies. J Clim 25:320–342

    Article  Google Scholar 

  40. Li Y, Lau NC (2012b) Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J Clim 25:4993–5010

    Article  Google Scholar 

  41. Li J, Wang J (2003) A new North Atlantic Oscillation index and its variability. Adv Atmos Sci 20:661–676

    Article  Google Scholar 

  42. Lim EP, Hendon HH, Rashid H (2013) Seasonal predictability of the southern annular mode due to its association with ENSO. J Clim 26:8037–8054

    Article  Google Scholar 

  43. Mathieu PP, Sutton RT, Dong BW, Collins M (2004) Predictability of winter climate over the North Atlantic European region during ENSO events. J Clim 17:1953–1974

    Article  Google Scholar 

  44. Merkel U, Latif M (2002) A high resolution AGCM study of the El Niño impact on the North Atlantic/European sector. Geophys Res Lett 29:1291. https://doi.org/10.1029/2001GL013726

    Article  Google Scholar 

  45. Moron M, Gouirand I (2003) Seasonal modulation of the ENSO relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int J Climatol 23:143–155

    Article  Google Scholar 

  46. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14 261–214 290

    Article  Google Scholar 

  47. Parks TW, Burrus CS (1987) Design of linear-phase finite impulse-response. In: Parks TW, Burrus CS (eds) Digital filter design. Wiley, pp 33–110

  48. Pozo-Vázquez D, Gamiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Diez Y (2005) ENSO events and associated European winter precipitation anomalies. Int J Climatol 25:17–31

    Article  Google Scholar 

  49. Quadrelli R, Pavan V, Molteni F (2001) Wintertime variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Clim Dyn 17:457–466

    Article  Google Scholar 

  50. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  51. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. https://doi.org/10.1029/2010GL046031

    Article  Google Scholar 

  52. Ren HL, Jin FF, Stuecker M, Xie RH (2013) ENSO regime change since the late 1970s as manifested by two types of ENSO. J Meteor Soc Japan 91:835–842

    Article  Google Scholar 

  53. Robertson AW, Mechoso CR, Kim YJ (2000) The influence of the Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 13:122–138

    Article  Google Scholar 

  54. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  55. Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon Weather Rev 122:1999–2015

    Article  Google Scholar 

  56. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  57. Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation-precipitation relationships. J Clim 9:1043–1059

    Article  Google Scholar 

  58. Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Global Precipitation Climatology Centre (GPCC), DWD, Internet publication, pp 1–8

  59. Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  60. Stuecker M, Jin FF, Timmermann A, McGregor S (2015) Combination Mode Dynamics of the anomalous North-West Pacific Anticyclone. J Clim 28:1093–1111

    Article  Google Scholar 

  61. The GFDL Global Atmospheric Model Development Team (2004) The New GFDL Global Atmosphere and Land Model AM2-LM2: evaluation with prescribed SST simulations. J Clim 17:4641–4673

    Article  Google Scholar 

  62. Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L24704. https://doi.org/10.1029/2006GL027881

    Article  Google Scholar 

  63. Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressure, surface temperatures, and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  64. van Loon H, Madden RA (1981) The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon Wea Rev 109:1150–1162

    Article  Google Scholar 

  65. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  66. Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, Von Storch H (1998) On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J Geophys Res 103:14 241–214 259

    Article  Google Scholar 

  67. Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  68. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian Climate? J Clim 13:1517–1536

    Article  Google Scholar 

  69. Watanabe M, Kimoto M (1999) Tropical–extratropical connection in the Atlantic atmosphere–ocean variability. Geophys Res Lett 26:2247–2250

    Article  Google Scholar 

  70. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  71. Wilson AB, Bromwich DH, Hines KM, Wang SH (2014) El Niño flavors and their simulated impacts on atmospheric circulation in the high southern latitudes. J Clim 27:8934–8955

    Article  Google Scholar 

  72. Wilson AB, Bromwich DH, Hines KM (2016) Simulating the mutual forcing of anomalous high-southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J Clim 29:2291–2309

    Article  Google Scholar 

  73. Wolter K (1987) The Southern Oscillation in surface circulation and climate over the tropical Atlantic, eastern Pacific, and Indian Oceans as captured by cluster analysis. J Clim Appl Meteorol 26:540–558

    Article  Google Scholar 

  74. Wu A, Hsieh WW (2004) The nonlinear association between ENSO and the Euro-Atlantic winter sea level pressure. Clim Dyn 23:859–868

    Article  Google Scholar 

  75. Wu Z, Zhang P (2015) Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Clim Dyn 45:1117–1128

    Article  Google Scholar 

  76. Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  77. Xiao D, Li JP (2011) Mechanism of stratospheric decadal abrupt cooling in the early 1990s as influenced by the Pinatubo eruption. Chinese Sci Bull 56:772–780

    Article  Google Scholar 

  78. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Climate 22:730–747

    Article  Google Scholar 

  79. Xie F, Li JP, Tian WS, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5295–5237

    Google Scholar 

  80. Xie SP, Kosaka Y, Du Y, Hu K, Chowdary JS, Huang G (2016) Indo-Western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432

    Article  Google Scholar 

  81. Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. https://doi.org/10.1029/2006GL028571

    Google Scholar 

  82. Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperature. Geophys Res Lett 39:L15702. https://doi.org/10.1029/2012GL052483

    Article  Google Scholar 

  83. Zhang R, Sumi A, Kimoto M (1996) Impacts of El Niño on the East Asian monsoon: a diagnostic study of the ’86/87 and ’91/92 events. J Meteor Soc Japan 74:49–62

    Article  Google Scholar 

  84. Zhang W, Jin FF, Li JP, Ren HL (2011) Contrasting impacts of two-type El Niño over the western North Pacific. J Meteor Soc Japan 89:563–569

    Article  Google Scholar 

  85. Zhang W, Jin FF, Zhao JX, Qi L, Ren HL (2013) The possible influence of a non-conventional El Niño on the severe autumn drought of 2009 in Southwest China. J Clim 26:8392–8405

    Article  Google Scholar 

  86. Zhang W, Jin FF, Turner A (2014) Increasing autumn drought over southern China associated with ENSO regime shift. Geophys Res Lett 41. https://doi.org/10.1002/2014GL060130

  87. Zhang W. Wang L, Xiang B, Qi L, He J (2015) Impacts of two types of La Nina on the NAO during boreal winter. Clim Dyn 44:1351–1366

    Article  Google Scholar 

  88. Zhang W, Li H, Stuecker M, Jin FF, Turner AG (2016) A new understanding of El Nino’s impact over East Asia: dominance of the ENSO combination mode. J Clim 29:4347–4359

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the SOA Program on Global Change and Air-Sea interactions (GASI-IPOVAI-03), the National Nature Science Foundation of China (41675073), and Jiangsu 333 High-level Talent Cultivation Project and the Six Talent Peaks. MFS was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Sciences (CPAESS). AGT was supported by the NCAS-Climate Core Agreement, Contract number R8/H12/83/00.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenjun Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Z., Stuecker, M.F. et al. Impact of ENSO longitudinal position on teleconnections to the NAO. Clim Dyn 52, 257–274 (2019). https://doi.org/10.1007/s00382-018-4135-1

Download citation

Keywords

  • El Niño Southern Oscillation (ENSO)
  • Local Atmospheric Response
  • Tropical Pacific
  • Climatological SSTs
  • ENSO Types