Advertisement

Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

  • Rita M. Cardoso
  • Pedro M. M. Soares
  • Daniela C. A. Lima
  • Pedro M. A. Miranda
Article

Abstract

Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971–2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071–2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.

Keywords

Climate change Regional climate modelling Extreme temperatures Heat waves High resolution multi-model ensembles 

Notes

Acknowledgements

The authors wish to acknowledge the projects SOLAR (PTDC/GEOMET/7078/2014), SHARE (RECI/GEOMET/0380/2012) and the EarthSystems Doctoral Programme at the Faculty of Sciences of the University of Lisbon (Grant PD/BD/ 106008/2014) without which this work wouldn’t be possible. This work was also supported by project FCT UID/GEO/50019/ 2013—Instituto Dom Luiz. The authors thank IPMA, I.P. for the data provided for this work (observational temperature station observations). Finally, the authors acknowledge the World Climate Research Programme’s Working Group on Regional Climate, and the Working Group on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. The authors also thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output. The authors also acknowledge the Earth System Grid Federation infrastructure, an international effort led by the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP).

Supplementary material

382_2018_4124_MOESM1_ESM.pdf (8 mb)
Supplementary material 1 (PDF 8218 KB)

References

  1. Alessandri A, De Felicie M, Zeng N, Mariotti A, Pan Y, Cherchi A, Lee JY, Wang B, Ha KJ, Ruti P, Artale V (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Nat Sci Rep 4:7211.  https://doi.org/10.1038/srep07211 CrossRefGoogle Scholar
  2. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank AK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109.  https://doi.org/10.1029/2005JD006290
  3. Anderson TW and DA Darling (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769CrossRefGoogle Scholar
  4. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15(2):149–156.  https://doi.org/10.1002/asl2.485
  5. Bellprat O, Kotlarski S, Lüthi D, Schär C (2013) Physical constraints for temperature biases in climate models. Geophys Res Lett 40:4042–4047.  https://doi.org/10.1002/grl.50737 CrossRefGoogle Scholar
  6. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? Geophys Res Lett 31:L02022CrossRefGoogle Scholar
  7. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106.  https://doi.org/10.1007/s00382-008-0446-y CrossRefGoogle Scholar
  8. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520CrossRefGoogle Scholar
  9. Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dynam 41(3–4):803–817.  https://doi.org/10.1007/s00382-013-1742-8 CrossRefGoogle Scholar
  10. Campaniço H, Soares PMM, Hollmuller P, Cardoso RM (2016) Climatic cooling potential of direct ventilation and evaporative cooling: high resolution spatiotemporal analysis for Iberia. Renew Energy 85:766–776,  https://doi.org/10.1016/j.renene.2015.07.038 CrossRefGoogle Scholar
  11. Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608.  https://doi.org/10.1002/joc.3616 CrossRefGoogle Scholar
  12. Cardoso RM, Soares PMM, Lima DCA, Semedo A (2016) The impact of climate change on the Iberian low-level wind jet: EURO-CORDEX regional climate simulation. Tellus A 68:29005.  https://doi.org/10.3402/tellusa.v68.29005 CrossRefGoogle Scholar
  13. Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn 41(11–12):2889–2907.  https://doi.org/10.1007/s00382-013-1731-y CrossRefGoogle Scholar
  14. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Clim Change 81:7–30CrossRefGoogle Scholar
  15. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5. Danish Meteorological Institute Technical Report 06–17. Danish Meteorological Institute CopenhagenGoogle Scholar
  16. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignments regional climate models: exploring the concept. Clim Res 44:179–194.  https://doi.org/10.3354/cr00916 CrossRefGoogle Scholar
  17. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62(5):591–604.  https://doi.org/10.1111/j.1600-0870.2010.00467.x CrossRefGoogle Scholar
  18. Collins M, Booth B, Harris G, Murphy J, Sexton D, Webb M (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27(2–3):127–147.  https://doi.org/10.1007/s00382-006-0121-0 CrossRefGoogle Scholar
  19. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  20. Della-Marta PM, Luterbacher J, Weissenfluh HV, Xoplaki E, Brunet M, Wanner H (2007) Doubled length of Western European summer heat waves since 1880. J Geophys Res.  https://doi.org/10.1029/2007JD008510 Google Scholar
  21. Demortier L (1995) Assessing the significance of a deviation in the tail of a distribution. CDF note 3419Google Scholar
  22. Déqué M (2010) Regional climate simulation with a mosaic of RCMs. Meteorol Z 19(3):259–266.  https://doi.org/10.1127/0941-2948/2010/0455 CrossRefGoogle Scholar
  23. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro MD, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70CrossRefGoogle Scholar
  24. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change Lett 114, 813–822CrossRefGoogle Scholar
  25. Dosio, A (2017) Projection of temperature and heat waves for Africa with an ensemble of CORDEX regional climate models. Clim Dyn 49: 493.  https://doi.org/10.1007/s00382-016-3355-5 CrossRefGoogle Scholar
  26. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Hess opinions “should we apply bias correction to global and regional climate model data?” Hydrol Earth Syst Sci Discuss 9(4):5355–5387CrossRefGoogle Scholar
  27. Ferro C, Hannachi A, Stephenson D (2005) Simple nonparametric techniques for exploring changing probability distributions of weather. J Clim 18: 4344–4354CrossRefGoogle Scholar
  28. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403.  https://doi.org/10.1038/ngeo866 CrossRefGoogle Scholar
  29. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG,Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124.  https://doi.org/10.1029/2002JD002287 CrossRefGoogle Scholar
  30. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M,Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  31. García-Díez M, Fernández J, Vautard R (2015) An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation. Clim Dyn.  https://doi.org/10.1007/s00382-015-2529-x Google Scholar
  32. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Organ 58:175–183Google Scholar
  33. Gleckler P, Taylor K, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113:D06104CrossRefGoogle Scholar
  34. Gutiérrez JM, Maraun D, Widman M, Huth R, Hertig E, Benestad R, Roessler O, Wibig J, Wilcke R, Kotlarski S, San-Martín D, Herrera S, Bedia J, Casanueva A, Manzanas R, Iturbide M, Vrac M, Dubrovsky M, Ribalaygua J, Portoles J, Räty O, Räisänen J, Hingray B, Raynaud D, Casado MJ, Ramos P, Zerenner T, Turco M, Bosshard T, Štěpánek P, Bartholy J, Pongracz R, Keller DE, Fischer AM, Cardoso RM, Soares PMM, Czernecki B, Pagé C (2018) An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int J Climatol.  https://doi.org/10.1002/joc.5462 Google Scholar
  35. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. BAMS 90:1095.  https://doi.org/10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  36. Hazeleger W et al (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Amer Meteor Soc 91:1357–1363.  https://doi.org/10.1175/2010BAMS2877.1 CrossRefGoogle Scholar
  37. Hertig E, Maraun D, Bartholy J, Pongracz R, Vrac M, Mares I, Gutiérrez JM, Wibig J, Casanueva A, Soares PMM (2017) Validation of extremes from the perfect-predictor experiment of the cost action value. Int J Climatol.  https://doi.org/10.1002/joc.5469
  38. Hewitt CD (2005) The ENSEMBLES project: providing ensemble based predictions of climate changes and their impacts. EGGS Newsl 13:22–25Google Scholar
  39. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21.  https://doi.org/10.1038/ngeo1032 CrossRefGoogle Scholar
  40. Ho CK, Stephenson DB, Collins M, Ferro CAT, Brown SJ (2012) Calibration strategies: a source of additional uncertainty in climate change projections. Bull Am Meteorol Soc 93(1):21–26CrossRefGoogle Scholar
  41. IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental. Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, New YorkGoogle Scholar
  42. IPCC (2014) Climate Change 2014: synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, SwitzerlandGoogle Scholar
  43. Jacob D et al (2014) EURO-CORDEX: new high resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  44. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36(9–10):1919–1939.  https://doi.org/10.1007/s00382-010-0780-8 CrossRefGoogle Scholar
  45. Katragkou E et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618.  https://doi.org/10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  46. Kjellström, E., Bärring, L., Jacob, D., Jones, R., Lenderink, G. and Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265CrossRefGoogle Scholar
  47. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680CrossRefGoogle Scholar
  48. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R et al. (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453  https://doi.org/10.1002/joc.773 CrossRefGoogle Scholar
  49. Kotlarski S et al (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333.  https://doi.org/10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  50. Kotlarski S, Szabó P, Herrera S, Räty O, Keuler K, Soares PMM, Cardoso RM, Bosshard T, Pagé C, Boberg F, Gutiérrez JM, Isotta FA, Jaczewski A, Kreienkamp F, Liniger MA, Lussana C, Pianko-Kluczyńska K (2017) Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int J Climatol.  https://doi.org/10.1002/joc.5249 Google Scholar
  51. Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10):3713–3730CrossRefGoogle Scholar
  52. Maraun D (2013) Bias correction, quantile mapping and downscaling: Revisiting the inflation issue. J Clim 26:2137–2143CrossRefGoogle Scholar
  53. Maraun D (2016) Bias correcting climate change simulations—a critical review. Curr Clim Change Rep 2:211.  https://doi.org/10.1007/s40641-016-0050-x CrossRefGoogle Scholar
  54. Maraun D, Shepherd T, Widmann M, Zappa G, Walton D, Gutierrez JM, Hagemann S, Richter I, Soares PMM, Hall A, Mearns L (2017a) Towards process-informed bias correction of climate change simulations. Nat Clim Change 7:764–773.  https://doi.org/10.1038/nclimate3418
  55. Maraun D, Huth R, Gutiérrez JM, Martín DS, Dubrovsky M, Fischer A, Hertig E, Soares PMM, Bartholy J, Pongrácz R, Widmann M, Casado MJ, Ramos P, Bedia J (2017b) The VALUE perfect predictor experiment: evaluation of temporal variability. Int J Climatol.  https://doi.org/10.1002/joc.5222 Google Scholar
  56. Martins JPA, Cardoso RM, Soares PMM, Trigo I, Belo-Pereira M, Moreira N, Tomé R (2016) The summer diurnal cycle of coastal cloudiness over west Iberia using Meteosat/SEVIRI and a WRF regional climate model simulation. Int J Climatol 36(4):1755–1772.  https://doi.org/10.1002/joc.4457 CrossRefGoogle Scholar
  57. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997.  https://doi.org/10.1126/science.1098704 CrossRefGoogle Scholar
  58. Meehl GA, Stocker TF, Collins WD, Friedlingstein P et al. (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the IPCC. Cambridge University Press, Cambridge, pp 747–846Google Scholar
  59. Miranda PMA, Coelho FES, Tomé AR, Valente MA, Carvalho A, Pires C, Pires HO, Pires VC, Ramalho C (2002) 20th century Portuguese Climate and Climate Scenarios. In: Santos FD, Forbes K, Moita R (eds) 2002, Climate change in Portugal: scenarios, impacts and adaptation measures (SIAM Project), Gradiva, pp 23–83Google Scholar
  60. Moberg A, Jones P, Lister D, Walther A, Brunet M, Jacobeit J, Alexander L, Della-Marta P, Luterbacher J, Yiou P, Chen D, Tank A, Saladie O, Sigro J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergstrom H, Bohm R, Butler C, Caesar J, Drebs A, Founda D, Gerstengarbe F, Micela G, Maugeri M, Osterle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner P, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res.  https://doi.org/10.1029/2006JD007103 Google Scholar
  61. Moss RH, Edmonds JA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  62. Peings Y, Cattiaux J, Douville H (2013) Evaluation and response of winter cold spells over western Europe in CMIP5 models. Clim Dyn 41(11–12):3025–3037.  https://doi.org/10.1007/s00382-012-1565-z CrossRefGoogle Scholar
  63. Pereira SC, Marta-Almeida M, Carvalho AC, Rocha A (2017) Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Climatol.  https://doi.org/10.1002/joc.5158 Google Scholar
  64. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  65. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:1–5.  https://doi.org/10.1029/2012GL053361 CrossRefGoogle Scholar
  66. Pinto RMS, Benali A, Sá ACL, Fernandes PM, Soares PMM, Cardoso RM, Trigo RM, da-Camara CC, Pereira JMC (2016) Probabilistic fire spread forecast as a tool for fire management in an operational setting. SpringerPlus 5:1205,  https://doi.org/10.1186/s40064-016-2842-9 CrossRefGoogle Scholar
  67. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Maule CF, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim Dyn.  https://doi.org/10.1007/s00382-015-2589-y Google Scholar
  68. Ramos AM, Trigo RM, Santo FE (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48(2):177–192.  https://doi.org/10.3354/cr00934 CrossRefGoogle Scholar
  69. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57.  https://doi.org/10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  70. Rios-Entenza A, Soares PMM, Trigo RM, Cardoso RM, Miguez-Macho G (2014) Precipitation recycling in the Iberian Peninsula: spatial patterns and temporal variability. J Geophys Res Atmos 119:5895–5912.  https://doi.org/10.1002/2013JD021274 CrossRefGoogle Scholar
  71. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348.  https://doi.org/10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  72. Rogelj J, Meinshausen M et al (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253.  https://doi.org/10.1038/nclimate1385 CrossRefGoogle Scholar
  73. Russo S, Dosio A, Graversen RG, Sillmann J, Carrao H, Dunbar MB, Singleton A, Montagna P, Barbola P, Vogt JV (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res Atmos 119:12,500–12,512.  https://doi.org/10.1002/2014JD022098 CrossRefGoogle Scholar
  74. Russo S, Sillmann J and Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ Res Lett 10 124003CrossRefGoogle Scholar
  75. Sá A, Benali A, Fernandes PM, Pinto RM, Trigo RM, Salis M, Russo A, Jerez S, Soares PMM, Shroeder W, Pereira JM (2017) Evaluating fire growth simulations using satellite active fires data. Remote Sens Environ 190:302–317.  https://doi.org/10.1016/j.rse.2016.12.023 CrossRefGoogle Scholar
  76. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: Model description and performance. Tellus Ser A 63(1):4–23.  https://doi.org/10.1111/j.1600-0870.2010.00478 CrossRefGoogle Scholar
  77. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336CrossRefGoogle Scholar
  78. Schoetter R, Cattiaux J, Douville H (2015) Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim Dyn 45:1–16CrossRefGoogle Scholar
  79. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209.  https://doi.org/10.1038/nature05095 CrossRefGoogle Scholar
  80. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010). Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99(3):125–161CrossRefGoogle Scholar
  81. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493.  https://doi.org/10.1002/jgrd.50188 CrossRefGoogle Scholar
  82. Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR tech. note TN-475_STRGoogle Scholar
  83. Soares PMM, Cardoso RM (2017d) A simple method to assess the added value using high-resolution climate distributions application to the EURO-CORDEX daily precipitation. Int J Climatol.  https://doi.org/10.1002/joc.5261 Google Scholar
  84. Soares PMM, Cardoso RM, Miranda PMA, Medeiros J de, Belo-Pereira M, Espirito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522.  https://doi.org/10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  85. Soares PMM, Cardoso RM, Miranda, PMA, Viterbo P, Belo-Pereira M. (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res 117:D07114.  https://doi.org/10.1029/2011JD016768 CrossRefGoogle Scholar
  86. Soares PMM, Cardoso RM, Semedo A, Chinita MJ, Ranjha R (2014) Climatology of Iberia coastal low-level wind jet: WRF high resolution results. Tellus A 66:22377.  https://doi.org/10.3402/tellusa.v66.22377 CrossRefGoogle Scholar
  87. Soares PMM, Cardoso RM, Lima DCA, Miranda PMA (2017a) Future precipitation in Portugal: high-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim Dyn 49:2503–2530,  https://doi.org/10.1007/s00382-016-3455-2 CrossRefGoogle Scholar
  88. Soares PMM, Lima DCA, Cardoso RM, Semedo A (2017b) High resolution projections for the Western Iberian Coastal Low level jet in a changing climate. Clim Dyn 49:1547–1566,  https://doi.org/10.1007/s00382-016-3397-8 CrossRefGoogle Scholar
  89. Soares PMM, Lima DCA, Cardoso RM, Nascimento M, Semedo A (2017c) Western Iberian Offshore Wind Resources: more or less in a global warming climate? Appl Energy 203:72–90.  https://doi.org/10.1016/j.apenergy.2017.06.004 CrossRefGoogle Scholar
  90. Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes. Clim Change 79:185–211CrossRefGoogle Scholar
  91. Tebaldi C, Arblaster JM, Knutt R (2011) Mapping model agreement on future climate projections. Geophys Res Lett 38:L2301.  https://doi.org/10.1029/2011GL049863 CrossRefGoogle Scholar
  92. van Meijgaard E, van Ulft L, van de Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. Tech. Rep 302 R Neth Meteorol Inst De Bilt, NetherlandsGoogle Scholar
  93. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  94. van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Report, 160 pp, Met Off. Hadley Cent, ExeterGoogle Scholar
  95. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2015) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575.  https://doi.org/10.1007/s00382-013-1714-z CrossRefGoogle Scholar
  96. Weisheimer A, Palmer TN (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett.  https://doi.org/10.1029/2005GL023365 Google Scholar
  97. Wilks DS (2006) Statistical methods in the atmospheric sciences. 2nd edn. International Geophysics Series, vol 91, Academic Press, CambridgeGoogle Scholar
  98. Willmott CJ, SM Robeson, K Matsuura (2012) A refined index of model performance. Int J Climatol 32:2088–2094.  https://doi.org/10.1002/joc.2419 CrossRefGoogle Scholar
  99. Xu Y, Gao X, Giorgi F (2010) Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim Res 41:61–81.  https://doi.org/10.3354/cr00835 CrossRefGoogle Scholar
  100. Zhang X, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Climate 18:1641–1651CrossRefGoogle Scholar
  101. Zhang Y, Dulière V, Mote P, Salathé Jr EP (2009) Evaluation of WRF and HadRM mesoscale climate simulations over the United States Pacific Northwest. J Clim 22:5511–5526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations