The Little Ice Age was 1.0–1.5 °C cooler than current warm period according to LOD and NAO

Abstract

We study the yearly values of the length of day (LOD, 1623–2016) and its link to the zonal index (ZI, 1873–2003), the Northern Atlantic oscillation index (NAO, 1659–2000) and the global sea surface temperature (SST, 1850–2016). LOD is herein assumed to be mostly the result of the overall circulations occurring within the ocean-atmospheric system. We find that LOD is negatively correlated with the global SST and with both the integral function of ZI and NAO, which are labeled as IZI and INAO. A first result is that LOD must be driven by a climatic change induced by an external (e.g. solar/astronomical) forcing since internal variability alone would have likely induced a positive correlation among the same variables because of the conservation of the Earth’s angular momentum. A second result is that the high correlation among the variables implies that the LOD and INAO records can be adopted as global proxies to reconstruct past climate change. Tentative global SST reconstructions since the seventeenth century suggest that around 1700, that is during the coolest period of the Little Ice Age (LIA), SST could have been about 1.0–1.5 °C cooler than the 1950–1980 period. This estimated LIA cooling is greater than what some multiproxy global climate reconstructions suggested, but it is in good agreement with other more recent climate reconstructions including those based on borehole temperature data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aguardo E, Burt JE (2014) Understanding weather and climate. Pearson, UK

  2. Bendat JS, Piersol AG (1971) Random data analysis: measurement procedures. WileyInterscience, New York

    Google Scholar 

  3. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  4. Christiansen B, Ljungqvist FC (2012) The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim Past 8:765–786

    Article  Google Scholar 

  5. Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multiproxy reconstruction of the winter north Atlantic oscillation index since A.D. 1400. J Clim 15:1754–1764

    Article  Google Scholar 

  6. Hodella DA, Brennera M, Curtisa JH, Medina-González R, Canb EI-C, Albornaz-Patb A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quatern Res 63(2):109–121

    Article  Google Scholar 

  7. Holton JR (2004) An introduction to dynamic meteorology. International Geophysical Series, vol 48 Academic Press, Cambridge

    Google Scholar 

  8. Hoyt DV, Schatten KH (1993) A discussion of plausible solar irradiance variations, 1700–1992. J Geophys Res 98:18895–18906

    Article  Google Scholar 

  9. Huang SP, Pollack HN, Shen P-Y (2008) A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys Res Lett 35:L13703

    Article  Google Scholar 

  10. IPCC, Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  11. IPCC, Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  12. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  13. Kerr RA (2001) A variable sun paces millennial climate. Science 294:1431–1433

    Article  Google Scholar 

  14. Kirkby J, 2007. Cosmic rays and climate. Surv Geophys 28:333–375

    Article  Google Scholar 

  15. Lamb HH (1972) Climate, present, past and future. Methuen London

  16. Lambeck K (1980) The earth’s variable rotation. Cambridge University Press, Cambridge

    Google Scholar 

  17. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD,. Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending north Atlantic oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124

    Article  Google Scholar 

  18. Mann ME, Bradley R, Hughes MK (1999) Northern Hemisphere temperatures during the last millennium: Inferences, uncertainties, and limitations. Geophys Res Lett 26(6):759–762

    Article  Google Scholar 

  19. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105:13252–13257

    Article  Google Scholar 

  20. Mazzarella A (2007) The 60-year modulation of global air temperature: the Earth’s rotation and atmospheric circulation connection. Theor Appl Climatol 88:193–199

    Article  Google Scholar 

  21. Mazzarella A, Scafetta N (2012) Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climatic change. Theor Appl Climatol 107:599–609

    Article  Google Scholar 

  22. Mazzarella A, Giuliacci A, Scafetta N (2013) Quantifying the multivariate ENSO index (MEI) coupling to CO2 concentration and to the length of day variations. Theoret Appl Climatol 111:601–607

    Article  Google Scholar 

  23. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and highresolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  24. Nunn PD (2000) Environmental catastrophe in the Pacific Islands around A.D. 1300. Geoarcheology 15:715–740

    Article  Google Scholar 

  25. Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523(7558):71–74

    Article  Google Scholar 

  26. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  27. Rhodes RH, Bertler NA, Baker JA, Steen-Larsen HC, Sneed SB, Morgenstern U, Johnsen SJ (2012) Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate of the Past 8:1223–1238

    Article  Google Scholar 

  28. Rossby CG, 1941. The scientific basis of modern meteorology in climate and man. In Yearbook (ed), U.S. Dept of Agriculture Washington DC, Washington DC

    Google Scholar 

  29. Sánchez-López G, Hernández A, Pla-Rabes S, Trigo RM, Toro M, Granados I, Sáez A, Masqué P, Pueyo JJ, Rubio-Inglés MJ, Giralt S (2016) Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula. Quatern Sci Rev 149:135–150

    Article  Google Scholar 

  30. Scafetta N (2012) Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J Atmos Solar Terr Phys 80:296–311

    Article  Google Scholar 

  31. Scafetta N (2013) Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth Sci Rev 126:321–357

    Article  Google Scholar 

  32. Scafetta N (2014a) Multi-scale dynamical analysis (MSDA) of sea level records versus PDO, AMO, and NAO indexes. Clim Dyn 43:175–192

    Article  Google Scholar 

  33. Scafetta N (2014b) Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys Space Sci 354:275–299

    Article  Google Scholar 

  34. Scafetta N, Mazzarella A (2015) The Arctic and Antarctic sea-ice area index records versus measured and modeled temperature data. Adv Meteorol (Article ID 481834)

  35. Scafetta N, Grigolini P, Imholt T, Roberts JA, West BJ (2004) Solar turbulence in earth’s global and regional temperature anomalies. Phys Rev E 69:026303

    Article  Google Scholar 

  36. Scafetta N, Milani F, Bianchini A, Ortolani S (2016) On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth Sci Rev 162:24–43

    Article  Google Scholar 

  37. Scafetta N, Mirandola A, Bianchini A (2017a) Natural climate variability, part 1: observations versus the modeled predictions. Int J Heat Technol 35:S9-S17

    Google Scholar 

  38. Scafetta N, Mirandola A, Bianchini A (2017b) Natural climate variability, part 2: interpretation of the post 2000 temperature standstill. Int J Heat Technol 35:S18-S26

    Google Scholar 

  39. Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S (2011) A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophy 529:A67

    Article  Google Scholar 

  40. Sidorenkov NS (2005) Physics of the Earth’s rotation instabilities. Astron Astrophys Trans 24(5):425–439

    Article  Google Scholar 

  41. Sidorenkov NS (2009) The interaction between Earth’s rotation and geophysical processes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  42. Sidorenkov NS, Orlov IA (2008) Atmospheric circulation epochs and climate changes. Russ Meteorol Hydrol 33:553–559

    Article  Google Scholar 

  43. Sidorenkov N, Wilson IRG (2009) The decadal fluctuations in the Earth’s rotation and in the climate characteristics. Proceedings of the Journées 2008 “Systèmes de référence spatio-temporels” & X. Lohrmann-Kolloquium: Astrometry, Geodynamics and Astronomical Reference Systems, TU Dresden, Germany, 22–24 September 2008, Edited by M. Soffel & N. Capitaine, Lohrmann-Observatorium and Observatoire de Paris, ISBN 978-2-901057-63-5, pp 174–174

  44. Soon W, Legates DR (2013) Solar irradiance modulation of Equator-to-Pole (Arctic) temperature gradients: Empirical evidence for climate variation on multi-decadal timescales. J Atmos Solar Terr Phys 93:45–56

    Article  Google Scholar 

  45. Steinhilber F, Abreu JA, Beer J et al (2012) 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS 109:5967–5971

    Article  Google Scholar 

  46. Stephenson FR, Morrison LV (1995) Long-term fluctuations in Earth’s rotation: 700 BC to AD 1990. Phil Trans R Soc A 351:165–202

    Google Scholar 

  47. Stephenson FR, Morrison LV, Hohenkerk CY (2016) Measurement of the Earth’s rotation: 720 BC to AD 2015. Proc R Soc A 472:20160404

    Article  Google Scholar 

  48. Trouet V, Esper J, Graham NE, Baker A,. Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324:78–80

    Article  Google Scholar 

  49. Wang Y-M, Lean JL, Sheeley NR Jr (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538

    Article  Google Scholar 

  50. Wilson IRG (2011) Are changes in the earth’s rotation rate externally driven and do they affect climate? Gen Sci J 3811:1–31

    Google Scholar 

  51. Wyatt M, Curry J (2014) Role of Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim Dyn 42:2763–2782

    Article  Google Scholar 

  52. Zotov L, Bizouard C, Schum CK (2016) A possible interrelation between Earth rotation and climatic variability at decadal time-scale. Geodesy Geodynamic 7:216–222

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriano Mazzarella.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazzarella, A., Scafetta, N. The Little Ice Age was 1.0–1.5 °C cooler than current warm period according to LOD and NAO. Clim Dyn 51, 3957–3968 (2018). https://doi.org/10.1007/s00382-018-4122-6

Download citation

Keywords

  • Length of day
  • Zonal index
  • Northern Atlantic Oscillation
  • Global sea surface temperature
  • Past climate reconstruction
  • Little Ice Age