Skip to main content

Advertisement

Log in

Reduced connection between the East Asian Summer Monsoon and Southern Hemisphere Circulation on interannual timescales under intense global warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous studies show a close relationship between the East Asian Summer Monsoon (EASM) and Southern Hemisphere (SH) circulation on interannual timescales. In this study, we investigate whether this close relationship will change under intensive greenhouse-gas effect by analyzing simulations under two different climate background states: preindustrial era and Representative Concentration Pathway (RCP) 8.5 stabilization from the Community Climate System Model Version 4 (CCSM4). Results show a significantly reduced relationship under stabilized RCP8.5 climate state, such a less correlated EASM with the sea level pressure in the southern Indian Ocean and the SH branch of local Hadley Cell. Further analysis suggests that the collapse of the Atlantic Meridional Overturning Circulation (AMOC) due to this warming leads to a less vigorous northward meridional heat transport, a decreased intertropical temperature contrast in boreal summer, which produces a weaker cross-equatorial Hadley Cell in the monsoonal region and a reduced Interhemispheric Mass Exchange (IME). Since the monsoonal IME acts as a bridge connecting EASM and SH circulation, the reduced IME weakens this connection. By performing freshwater hosing experiment using the Flexible Global Ocean—Atmosphere—Land System model, Grid-point Version 2 (FGOALS-g2), we show a weakened relationship between the EASM and SH circulation as in CCSM4 when AMOC collapses. Our results suggest that a substantially weakened AMOC is the main driver leading to the EASM, which is less affected by SH circulation in the future warmer climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

We sincerely thank the two anonymous reviewers for their helpful comments and suggestions on the manuscript. This work is supported by the Global Change Program of National Key Research and Development Program of China (Grants 2016YFA0600504 and 2015CB953902), the National Natural Science Foundation of China (Grants 41630527, 41206024,41305079,41376019 and 41576026), Qing Lan project and project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). A. Hu was supported by the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy’s, Office of Science (BER), Cooperative Agreement DE-FC02-97ER62402. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies, and resources by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pinwen Guo or Jun Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Guo, P., Cheng, J. et al. Reduced connection between the East Asian Summer Monsoon and Southern Hemisphere Circulation on interannual timescales under intense global warming. Clim Dyn 51, 3943–3955 (2018). https://doi.org/10.1007/s00382-018-4121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4121-7

Keywords