Skip to main content

Advertisement

Log in

Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Anticyclonic cold surges entering the Gulf of Mexico (Nortes) generate ocean waves that disrupt maritime activities. Norte derived waves are less energetic than the devastating waves from tropical cyclones, but more frequent (~ 22 events/year) and with larger spatial influence. Despite their importance, few studies characterize Nortes derived waves and assess the effects of climate change on their occurrence. This study presents a method to identify and characterize Nortes with relation to their derived waves in the Gulf of Mexico. We based the identification of Nortes on synoptic measurements of pressure differences between Yucatan and Texas and wind speed at different buoy locations in the Gulf of Mexico. Subsequently, we identified the events in the CFSR reanalysis (present climate) and the CNRM-M5 model for the present climate and the RCP 8.5 scenario. We then forced a wave model to characterize the wave power generated by each event, followed by a principal component analysis and classification by k-means clustering analysis. Five different Nortes types were identified, each one representing a characteristic intensity and area of influence of the Norte driven waves. Finally, we estimated the occurrence of each Norte type for the present and future climates, where the CNRM-M5 results indicate that the high-intensity events will be less frequent in a warming climate, while mild events will become more frequent. The consequences of such changes may provide relief for maritime and coastal operations because of reduced downtimes. This result is particularly relevant for the operational design of coastal and marine facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Appendini CM, Torres-Freyermuth A, Oropeza F et al (2013) Wave modeling performance in the Gulf of Mexico and Western Caribbean: wind reanalyses assessment. Appl Ocean Res 39:20–30. https://doi.org/10.1016/j.apor.2012.09.004

    Article  Google Scholar 

  • Appendini CM, Torres-Freyermuth A, Salles P et al (2014) Wave climate and trends for the Gulf of Mexico: a 30 year wave hindcast. J Clim 27:1619–1632. https://doi.org/10.1175/JCLI-D-13-00206.1

    Article  Google Scholar 

  • Appendini CM, Pedrozo-Acuña A, Meza-Padilla R et al (2017) On the role of climate change on wind waves generated by tropical cyclones in the Gulf of Mexico. Coast Eng J. https://doi.org/10.1142/S0578563417400010

    Article  Google Scholar 

  • Baker FH (1874) Survey of a portion of the Mexican-Gulf Coast. Am Geogr Soc 5:237–242

    Google Scholar 

  • Boucard A (1883) On a collection of birds from Yucatan. J Zool 51:434–513. https://doi.org/10.1111/j.1469-7998.1883.tb06660.x doi

    Article  Google Scholar 

  • Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model 70:189–206. https://doi.org/10.1016/j.ocemod.2012.07.005

    Article  Google Scholar 

  • Colle BA, Mass CF (1995) The structure and evolution of cold surges east of the rocky mountains. Mon Weather Rev 123:2577–2610. https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2

    Article  Google Scholar 

  • Cox AT, Cardone VJ, Swail VR (2011) On the use of the climate forecast system reanalysis wind forcing in ocean response modeling. In: 12th International workshop on wave hindcasting and forcasting and third coastal hazards symposium 20, paper G3

  • Crisp CA, Lewis JM (1992) Return flow in the Gulf of Mexico. Part I: A classificatory approach with a global historical perspective. J Appl Meteorol 31(8):868–881

    Article  Google Scholar 

  • Dallavalle JP, Bosart LF (1975) A synoptic investigation of anticyclogenesis accompanying North American polar air outbreaks. Mon Weather Rev 103:941–957

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dimego GJ, Bosart LF, Endersen GW (1976a) An examination of the frequency and mean conditions sourrounding frontal incursions into the Gulf of Mexico and Caribbean Sea. Mon Weather Rev 104:709–717

    Article  Google Scholar 

  • DiMego GJ, Bosart LF, Endersen GW (1976b) An examination of the frequency and mean conditions surrounding frontal incursions into the Gulf of Mexico and Caribbean Sea. Mon Weather Rev 104:709–718. https://doi.org/10.1175/1520-0493(1976)104<0709:AEOTFA>2.0.CO;2

    Article  Google Scholar 

  • Espejo A, Camus P, Losada IJ, Méndez FJ (2014) Spectral ocean wave climate variability based on atmospheric circulation patterns. J Phys Oceanogr 44:2139–2152. https://doi.org/10.1175/JPO-D-13-0276.1

    Article  Google Scholar 

  • Frankenfield HC (1917) “Northers” of the canal zone. Mon Weather Rev 45:546–550

    Google Scholar 

  • Hansman H (1984) The effect of the atmospheric droplet size distribution on aircraft ice accretion. J Aircr 22:503–508

    Article  Google Scholar 

  • Henry WK (1979) Some aspects of the fate of cold fronts in the Gulf of Mexico. Mon Weather Rev 107:1078–1082

    Article  Google Scholar 

  • Hernández-Lasheras J (2015) Identificación y clasificación de Nortes en función del oleaje asociado en el Golfo de México. Universidad de Cantabria

  • Hewson TD (1998) Objective fronts. Meteorol Appl 5:37–65. https://doi.org/10.1017/S1350482798000553

    Article  Google Scholar 

  • Hill JB (1969) Temperature variability and synoptic cold fronts in the winter climate of Mexico. Masters Thesis, McGill University, p 108

  • Hunt EB (1863) Key west physical notes; zodiacal light; atmospheric transparency; Gulf Stream cloud bank; ray bands; northers; hurricanes; ventilation; yellow fever; a water moonrise. Am J Sci 35:388–396. https://doi.org/10.2475/ajs.s2-35.105.388 doi

    Article  Google Scholar 

  • Jenkner J, Sprenger M, Schwenk I et al (2010) Detection and climatology of fronts in a high-resolution model reanalysis over the Alps. Meteorol Appl 17:1–18. https://doi.org/10.1002/met.142

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Klaus D (1973) Las invasiones de aire frio en los Tropicos a sotavento de las montañas Rocallosas. Geofisica Internacional 13(2):99–143

    Google Scholar 

  • Konrad CE (1996) Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon Weather Rev 124(6):1067–1083

    Article  Google Scholar 

  • López-Méndez JV (2009) Análisis del evento meteorológico del 2007 relacionado con la inundación de Tabasco. Poosgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México

  • Luna-Niño R, Cavazos T (2017) Formation of a coastal barrier jet in the Gulf of Mexico due to the interaction of cold fronts with the Sierra Madre Oriental mountain range. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3188

    Article  Google Scholar 

  • Mecikalski JR, Tilley JS (1992) Meteorology and atmospheric physics cold surges along the front range of the rocky mountains: development of a classification scheme. Meteorol Atmos Phys 271:249–271

    Article  Google Scholar 

  • Mendoza ET, Trejo-Rangel MA, Salles P et al (2013) Storm characterization and coastal hazards in the Yucatan Peninsula. J Coast Res. https://doi.org/10.2112/SI65-134

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360. https://doi.org/10.1175/BAMS-87-3-343

    Article  Google Scholar 

  • Mosiño PA (1964) Surface weather and upper-air flow patterns in Mexico. Geofís Int 4:117–168

    Google Scholar 

  • Notes by the Editor (1893) The Northers of Tampico and Vera Cruz. Mon Weather Rev 21:363–364

    Google Scholar 

  • Notes by the Editor (1898) Northers in the Caribbean Sea and the Gulf of Mexico. Mon Weather Rev 26:568–568

    Google Scholar 

  • Perez J, Menendez M, Camus P et al (2015) Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Model 96:161–170. https://doi.org/10.1016/j.ocemod.2015.06.001

    Article  Google Scholar 

  • Pérez EP, Magaña V, Caetano E, Kusunoki S (2014) Cold surge activity over the Gulf of Mexico in a warmer climate1. Front Earth Sci 2:1–10. https://doi.org/10.3389/feart.2014.00019

    Article  Google Scholar 

  • Ramírez-Elías DA (2007) Climatología y eventos extremos de oleaje en la costa tamaulipeca. Universidad Autónoma de Tamaulipas

  • Reding PJ (1992) The Central American cold surge: an observational analysis of the deep southward penetration of North American cold fronts. Texas A&M University, College Station, TX

    Google Scholar 

  • Rogers JC, Rohli RV (1991) Florida citrus freezes and polar anticyclones in the Great Plains. J Clim 4:1103–1113

    Article  Google Scholar 

  • Ruiz LE (1892) Epidemic and endemic diseases observed in the ports of entry of the Mexican Gulf. Public Health Pap Rep 18:180–188

    Google Scholar 

  • Ruiz-Salcines P (2013) Campos de viento para hindcast de oleaje: reanálisis, paramétricos y fusión. M.E. thesis, Dept. Ciencias y Técnicas del Agua y del Medio Ambiente. Universidad de Cantabria

  • Sáenz F, Durán-Quesada AM (2015) A climatology of low level wind regimes over Central America using a weather type classification approach. Front Earth Sci 3:1–18. https://doi.org/10.3389/feart.2015.00015

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Salinas JA, Colorado G, Maya ME, Montero MJ (2016) Global ensamble models for the tropical area. In: International conference on regional climate CORDEX 2016

  • Schultz DM, Bracken WE, Bosart LF et al (1997) The 1993 superstorm cold surge: frontal structure, gap flow, and tropical impact. Mon Weather Rev 125:5–39. https://doi.org/10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2

    Article  Google Scholar 

  • Schultz DM, Bracken WE, Bosart LF (1998) Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon Weather Rev 126:5–27

    Article  Google Scholar 

  • Sheffield J, Barrett AP, Colle B et al (2013a) North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology. J Clim 26:9209–9245. https://doi.org/10.1175/JCLI-D-12-00592.1

    Article  Google Scholar 

  • Sheffield J, Camargo S, Fu R et al (2013b) North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26:9247–9290. https://doi.org/10.1175/JCLI-D-12-00593.1

    Article  Google Scholar 

  • Sørensen OR, Kofoed-Hansen H, Rugbjerg M, Sørensen LS (2004) A third-generation spectral wave model using an unstructured finite volume technique. In: Proceedings of 29th international conference on coastal engineering ASCE, New York, pp 894–906

  • Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

    Article  Google Scholar 

  • Taylor MK (1888) The climate of southwestern Texas and its advantages as a winter health resort. Trans Am Clin Climatol Assoc 5:209–220

    Google Scholar 

  • Vazquez-Aguirre JL (2000) Caracterización objetiva de los Nortes del Golfo de México y su variabilidad interanual. Universidad Veracruzana

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Willett HC (1934) North American air mass properties. J Aeronaut Sci 1(2):78–87

    Article  Google Scholar 

Download references

Acknowledgements

UNAM provided funding for this study through the Instituto de Ingeniería internal Project no. 5358/4340 and PAPIIT Project IA100418. We would like to thank for the valuable comments provided by Tereza Cavazos and the anonymous reviewers, Gonzalo Martin and Iván Adrián for the IT support, as well as to José López González. Christian M. Appendini acknowledges support from PASPA-UNAM. J.A. Kurczyn acknowledges support from Cátedras CONACYT Project 1912 and Ciencia Básica Project 257075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Appendini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appendini, C.M., Hernández-Lasheras, J., Meza-Padilla, R. et al. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico. Clim Dyn 51, 3747–3763 (2018). https://doi.org/10.1007/s00382-018-4108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4108-4

Keywords

Navigation