Advertisement

Climate Dynamics

, Volume 51, Issue 9–10, pp 3735–3746 | Cite as

The response of relative humidity to centennial-scale warming over the southeastern Tibetan Plateau inferred from tree-ring width chronologies

  • Chunming Shi
  • Valérie Daux
  • Zongshan LiEmail author
  • Xiuchen Wu
  • Tianyi Fan
  • Qian Ma
  • Xiaoxu Wu
  • Huaiyu Tian
  • Matthieu Carré
  • Duoying Ji
  • Wenli Wang
  • Annette Rinke
  • Wei Gong
  • Yan Liu
  • Yating Chen
  • Valérie Masson-Delmotte
Article

Abstract

Understanding the past variability in atmospheric moisture associated with global warming is essential for reducing the uncertainties in climate projections. Such understanding is especially necessary in the Asian monsoon region in the context of increasing anthropogenic forcing. Here, we average four tree-ring width chronologies from the southeastern Tibetan Plateau (TP) over their common intervals and reconstruct the variability in regional relative humidity (RH) from the previous May to the current March over 1751–2005. In contrast to the summer drying associated with centennial-scale warming and the weakening of the Asian summer monsoon, our RH reconstruction shows no significant centennial trend from the 1820s through the 2000s. This absence of a consistent signal is due to the combined effects of contrasting moisture trends during the monsoonal and non-monsoonal seasons, which are controlled by summer monsoon precipitation and local convective precipitation, respectively. The interannual and decadal variability of our RH reconstruction is modulated by El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO); however, these links are unstable over time. Two rapid increases in moisture are found to have occurred around the 1820s and 1980s; the latter increase caused the variability in RH during the 1980s–2000s to be the largest over the entire reconstruction period.

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC; 31600354), the National Research and Development Programme of China (2016YFC0502105), and the Fundamental Research Funds for the Central Universities.

References

  1. Abram NJ, Mcgregor HV, Tierney JE, Evans MN, Mckay NP, Kaufman DS (2016) Early onset of industrial-era warming across the oceans and continents. Nature 536:411CrossRefGoogle Scholar
  2. An W, Liu X, Leavitt SW, Xu G, Zeng X, Wang W, Qin D, Ren J (2014) Relative humidity history on the Batang-Litang Plateau of western China since 1755 reconstructed from tree-ring delta O-18 and delta D. Clim Dynam 42:2639–2654CrossRefGoogle Scholar
  3. Bi Y, Xu J, Gebrekirstos A, Guo L, Zhao M, Liang E, Yang X (2015) Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, southwest China. Int J Climatol 35:4057–4065CrossRefGoogle Scholar
  4. Biondi F, Waikul K (2004) DENDROCLIM2002: A C + + program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci-Uk 30:303–311CrossRefGoogle Scholar
  5. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian Monsoon Failure and Megadrought During the Last Millennium. Science 328:486–489CrossRefGoogle Scholar
  6. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606CrossRefGoogle Scholar
  7. Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau?. Sci Rep-Uk 5Google Scholar
  8. Duan A, Hu J, Xiao Z (2013) The Tibetan Plateau Summer Monsoon in the CMIP5 Simulations. J Clim 26:7747–7766CrossRefGoogle Scholar
  9. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000. Science 336:455–458CrossRefGoogle Scholar
  10. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98Google Scholar
  11. Ewers BE, Oren R (2000) Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol 20:579–589CrossRefGoogle Scholar
  12. Fan Z, Brauning A, Cao K (2008) Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since AD 1655. Int J Climatol 28:1879–1887CrossRefGoogle Scholar
  13. Fan Z, Braeuning A, Cao K, Zhu S (2009) Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. Forest Ecol Manag 258:306–313CrossRefGoogle Scholar
  14. Fang K, Gou X, Chen F, Li J, D’Arrigo R, Cook E, Yang T, Davi N (2010) Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Clim Dynam 35:577–585CrossRefGoogle Scholar
  15. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited. Ann Bot-London 89:183–189CrossRefGoogle Scholar
  16. Fritts HC (1976) Tree Rings and Climate. Academic Press, LondonGoogle Scholar
  17. Hall A, Manabe S (1999) The role of water vapor feedback in unperturbed climate variability and global warming. J Clim 12:2327–2346CrossRefGoogle Scholar
  18. Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Environ Resour 25:441–475Google Scholar
  19. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  20. Huang R, Zhu H, Liu X, Liang E, Griessinger J, Wu G, Li X, Brauning A (2017) Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau? Global Planet Change 148:217–226CrossRefGoogle Scholar
  21. Huntington TG (2006) Evidence for intensification of the global water cycle: Review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  22. Krishnamurthy V, Goswami BN (2000) Indian monsoon-ENSO relationship on interdecadal timescale. J Clim 13:579–595CrossRefGoogle Scholar
  23. Krishnamurthy L, Krishnamurthy V (2014a) Decadal scale oscillations and trend in the Indian monsoon rainfall. Clim Dynam 43:319–331CrossRefGoogle Scholar
  24. Krishnamurthy L, Krishnamurthy V (2014b) Influence of PDO on South Asian summer monsoon and monsoon-ENSO relation. Clim Dynam 42:2397–2410CrossRefGoogle Scholar
  25. Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dynam 21:233–242CrossRefGoogle Scholar
  26. Laine A, Nakamura H, Nishii K, Miyasaka T (2014) A diagnostic study of future evaporation changes projected in CMIP5 climate models. Clim Dynam 42:2745–2761CrossRefGoogle Scholar
  27. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294CrossRefGoogle Scholar
  28. Li J, Shi J, Zhang DD, Yang B, Fang K, Yue PH (2017) Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim Dynam 48:649–660CrossRefGoogle Scholar
  29. Liang EY, Shao XM, Xu Y (2009) Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor Appl Climatol 98:9–18CrossRefGoogle Scholar
  30. Liu J, Nina D (2015) Tree-ring recorded 644-year precipitation variations on the southwestern Tibetan Plateau. Quatern Sci 35:1082–1092Google Scholar
  31. Liu Y, An ZS, Linderholm HW, Chen DL, Song HM, Cai QF, Sun JY, Tian H (2009) Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser D Earth Sci 52:348–359CrossRefGoogle Scholar
  32. Liu J, Yang B, Qin C (2011) Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. Quatern Int 236:75–81CrossRefGoogle Scholar
  33. Liu X, Zeng X, Leavitt SW, Wang W, An W, Xu G, Sun W, Wang Y, Qin D, Ren J (2013) A 400-year tree-ring delta O-18 chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Global Planet Change 104:23–33CrossRefGoogle Scholar
  34. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the ffth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86CrossRefGoogle Scholar
  36. Melvin TM, Briffa KR (2014a) CRUST: Software for the implementation of Regional Chronology Standardisation: Part 1. Signal-Free RCS. Dendrochronologia 32:7–20CrossRefGoogle Scholar
  37. Melvin TM, Briffa KR (2014b) CRUST: Software for the implementation of Regional Chronology Standardisation: Part 2. Further RCS options and recommendations. Dendrochronologia 32:343–356CrossRefGoogle Scholar
  38. Michaels HJ, Benner B, Hartgerink AP, Lee TD, Rice S, Willson MF, Bertin R (1988) Seed size variation: magnitude, distribution, and ecological correlates. Evol Ecol 2:157–166CrossRefGoogle Scholar
  39. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schafer K (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526CrossRefGoogle Scholar
  40. Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97:321–327CrossRefGoogle Scholar
  41. Ryan MG, Bond BJ, Law BE, Hubbard RM, Woodruff D, Cienciala E, Kucera J (2000) Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124:553–560CrossRefGoogle Scholar
  42. Sabade SS, Kulkarni A, Kripalani RH (2011) Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor Appl Climatol 103:543–565CrossRefGoogle Scholar
  43. Sabeerali CT, Rao SA, Dhakate AR, Salunke K, Goswami BN (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dynam 45:161–174CrossRefGoogle Scholar
  44. Sherwood SC, Meyer CL (2006) The general circulation and robust relative humidity. J Clim 19:6278–6290CrossRefGoogle Scholar
  45. Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res Atmos: 115.  https://doi.org/10.1029/2009JD012585 CrossRefGoogle Scholar
  46. Shi CM, Masson-Delmotte V, Daux V, Li ZS, Zhang QB (2010) An unstable tree-growth response to climate in two 500 year chronologies, North Eastern Qinghai-Tibetan Plateau. Dendrochronologia 28:225–237CrossRefGoogle Scholar
  47. Shi C, Daux V, Zhang QB, Risi C, Hou SG, Stievenard M, Pierre M, Li Z, Masson-Delmotte V (2012) Reconstruction of southeast Tibetan Plateau summer climate using tree ring delta O-18: moisture variability over the past two centuries. Clim Past 8:205–213CrossRefGoogle Scholar
  48. Shi C, Masson-Delmotte V, Daux V, Li Z, Carre M, Moore JC (2015) Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology. Clim Dynam 45:1367–1380CrossRefGoogle Scholar
  49. Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dynam 45:233–252CrossRefGoogle Scholar
  50. Sun Y, Ding Y (2011) Responses of South and East Asian summer monsoons to different land-sea temperature increases under a warming scenario. Chinese Sci Bull 56:2718–2726CrossRefGoogle Scholar
  51. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595CrossRefGoogle Scholar
  52. Wang J, Yang B, Qin C, Kang S, He M, Wang Z (2014) Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Clim Dynam 43:627–640CrossRefGoogle Scholar
  53. Wang J, Yang B, Ljungqvist FC (2015) A Millennial Summer Temperature Reconstruction for the Eastern Tibetan Plateau from Tree-Ring Width. J Clim 28:5289–5304CrossRefGoogle Scholar
  54. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  55. Wernicke J, Griessinger J, Hochreuther P, Braeuning A (2015) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from delta O-18 of tree-ring cellulose. Clim Past 11:327–337CrossRefGoogle Scholar
  56. Wernicke J, Hochreuther P, Griessinger J, Zhu H, Wang L, Braeuning A (2017) Multi-century humidity reconstructions from the southeastern Tibetan Plateau inferred from tree-ring delta O-18. Global Planet Change 149:26–35CrossRefGoogle Scholar
  57. Wilson R, Anchukaitis K, Briffa KR, Buentgen U, Cook E, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B, Hegerl G, Helama S, Klesse S, Krusic PJ, Linderholm HW, Myglan V, Osborn TJ, Rydval M, Schneider L, Schurer A, Wiles G, Zhang P, Zorita E (2016) Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quatern Sci Rev 134:1–18CrossRefGoogle Scholar
  58. Xu H, Hong Y, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dynam 39:2079–2088CrossRefGoogle Scholar
  59. Yang B, Qin C, Wang J, He M, Melvin TM, Osborn TJ, Briffa KR (2014) A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. P Natl Acad Sci Usa 111:2903–2908CrossRefGoogle Scholar
  60. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–464CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunming Shi
    • 1
  • Valérie Daux
    • 2
    • 6
  • Zongshan Li
    • 3
    Email author
  • Xiuchen Wu
    • 4
  • Tianyi Fan
    • 1
  • Qian Ma
    • 1
  • Xiaoxu Wu
    • 1
  • Huaiyu Tian
    • 1
  • Matthieu Carré
    • 5
  • Duoying Ji
    • 1
  • Wenli Wang
    • 1
  • Annette Rinke
    • 1
    • 7
  • Wei Gong
    • 4
    • 8
  • Yan Liu
    • 1
  • Yating Chen
    • 1
  • Valérie Masson-Delmotte
    • 2
  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS-UVSQ 8212, Institut Pierre Simon LaplaceGif-sur-YvetteFrance
  3. 3.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  5. 5.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN LaboratoryParisFrance
  6. 6.Université de Versailles - Saint QuentinVersaillesFrance
  7. 7.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
  8. 8.Institute of Land Surface System and Sustainable Development, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina

Personalised recommendations