Abstract
While climatological data of high spatial resolution are largely available in most developed countries, the network of climatological stations in many other regions of the world still constitutes large gaps. Especially for those regions, interpolation methods are important tools to fill these gaps and to improve the data base indispensible for climatological research. Over the last years, new hybrid methods of machine learning and geostatistics have been developed which provide innovative prospects in spatial predictive modelling. This study will focus on evaluating the performance of 12 different interpolation methods for the wind components \(\overrightarrow{u}\) and \(\overrightarrow{v}\) in a mountainous region of Central Asia. Thereby, a special focus will be on applying new hybrid methods on spatial interpolation of wind data. This study is the first evaluating and comparing the performance of several of these hybrid methods. The overall aim of this study is to determine whether an optimal interpolation method exists, which can equally be applied for all pressure levels, or whether different interpolation methods have to be used for the different pressure levels. Deterministic (inverse distance weighting) and geostatistical interpolation methods (ordinary kriging) were explored, which take into account only the initial values of \(\overrightarrow{u}\) and \(\overrightarrow{v}\). In addition, more complex methods (generalized additive model, support vector machine and neural networks as single methods and as hybrid methods as well as regression-kriging) that consider additional variables were applied. The analysis of the error indices revealed that regression-kriging provided the most accurate interpolation results for both wind components and all pressure heights. At 200 and 500 hPa, regression-kriging is followed by the different kinds of neural networks and support vector machines and for 850 hPa it is followed by the different types of support vector machine and ordinary kriging. Overall, explanatory variables improve the interpolation results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ali SM, Mahdi AS, Shaban AH (2012) Wind speed estimation for Iraq using several spatial interpolation methods. Br J Sci 7(2):48–55
Apaydin H, Sonmez FK, Yildirim YE (2004) Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim Res 28:31–40
Appelhans T, Mwangomo E, Hardy DR, Hemp A, Nauss T (2015) Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat Stat 14:91–113
Beek EG (1991) Spatial interpolation of daily meteorological data: theoretical evaluation of available techniques. Wageningen (The Netherlands), DLO The Winand Staring Centre. Report 53.1
Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific, New Jersey
Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York
Bivand R, Keitt T, Rowlingson B (2016) rgdal: bindings for the geospatial data abstraction library. R package version 1.1–10. https://CRAN.R-project.org/package=rgdal
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. COLT ‘92. Proceedings of the fifth annual workshop on Computational learning theory. ACM Press, New York, pp 144–152
Brogniez D de, Ballabio C, Stevens A, Jones RJA, Montanarella L (2015) A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur J Soil Sci 66:121–134
Brunsdon C, Comber L (2015) An introduction to R for spatial analysis and mapping. Sage, Los Angeles
Cellura M, Cirrincione G, Marvuglia A, Miraoui A (2008) Wind speed spatial estimation for energy planning in Sicily: introduction and statistical analysis. Renew Energy 33:1237–1250
Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell SystTechnol 2:3 (Article 27)
Chinta S (2014) A comparison of spatial interpolation methods in wind speed estimation across Anantapur District, Andhra Pradesh. J Earth Sci Res 2(2):48–54
Cook ER (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402
Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597
Denhard M, Walter A, Schönwiese C-D (1996) Simulation globaler Klimaänderungen mit Hilfe neuronaler Netze: Konzept, Anwendungsprinzipien und Ergebnisse. Nat Rdsch 49(8):295–301
Everitt BS, Hothorn T (2010) A handbook of statistical analysis using R, 2nd ed. CRC Press, Boca Raton
Gandin L (1965) Objective analysis of meteorological fields (Leningrad: Gidromet). 1963. English translation. Israel program for scientific translation), Jerusalem
González-Longatt F, Medina H, González JS (2015) Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela. Renew Sustain Energy Rev 48:1–16
Goodin WR, McRae GJ, Seinfeld JH (1979) A comparison of interpolation methods for sparse data: application to wind and concentration fields. J Appl Meteorol 18:761–771
Gunn SR (1998) Support vector machines for classification and regression. Technical Report. http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf. Accessed 22 Nov 2016
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
Hartmann AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables. NGG-GIS Series 99-01. CIMMYT, Mexico
Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1(3):297–310
Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119
Heinert M, Riedel B (2010) Support vector machines. Teil 2: Praktische Beispiele und Anwendung. ZFV 135(5):308–313
Hengl T (2009) A practical guide to geostatistical mapping. http://spatial-analyst.net/book/system/files/Hengl_2009_GEOSTATe2c1w.pdf. Accessed 6 Jun 2015
Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: form equations to case studies. Comput Geosci 33:1301–1315
Hernández-Escobedo Q, Saldaña-Flores R, Rodríguez-García ER, Manzano-Agugliaro F (2014) Wind energy resource in Northern Mexico. Renew Sustain Energy Rev 32:890–914
Hijmans RJ (2015) raster: geographic data analysis and modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster
Hijmans RJ, Cameron S, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978
Hijmans RJ, Phillips S, Leathwick J, Elith J (2016) dismo: species distribution modeling. R package version 1.0–15. https://CRAN.R-project.org/package=dismo
Hohn ME (1999) Geostatistics and petroleum geology, 2nd edn. Kluwer Academic Publishers, Dordrecht
Hsieh WW (2009) Machine learning methods in the environmental sciences. Neural networks and kernels. Cambridge University Press, Cambridge
Izenman AJ (2013) Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer, New York
James G, Witten D, Hastie T, Tibsgirani R (2013) An introduction to statistical learning: with applications in R. Springer, New York
Jarosch AH, Anslow FS, Clarke KC (2012) High-resolution precipitation and temperature downscaling for glacier models. Clim Dyn 38:391–409
Jia S, Zhu W, Lü A, Yan T (2011) A statistical spatial downscaling algorithm of TRIMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ 115:3069–3079
Jiang D, Liu H, Wang W (2001) Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere. Atmos Environ 35:4877–4885
Joyner TA, Friedland CJ, Rohli RV, Treviño AM, Massarra C, Paulus G (2015) Cross-correlation modeling of European windstorms: a cokriging approach for optimizing surface wind estimates. Spat Stat 13:62–75
Kim G, Barros AP (2002) Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using constraction mapping and ancillary data. Remote Sens Environ 83:400–413
Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metallurg Mining Soc S Afr 52 (6):119–139
Kubat M (2015) An introduction to machine learning. Springer, Cham
Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York
Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241
Legates DR, McCabe GJ (2013) A refined index of model performance: a rejoinder. Int J Climatol 33(4):1053–1056
Li J (2017) Assessing the accuracy of predictive models for numerical data: not r or r2, why not? Then what? PLoS One 12(8):e0183250
Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23
Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6:228–241
Li J, Heap AD, Potter A, Daniell JJ (2011) Application of machine learning methods to spatial interpolation of environmental variables. Environ Model Softw 26:1647–1659
Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: A review. Environ Model Softw 53:173–189
Li T, Zheng X, Dai Y, Yang C, Chen Z, Zhang S, Wu G, Wang Z, Huang C, Shen Y, Liao R (2014) Mapping near-surface air temperature, pressure, relative humidity and wind speed over mainland China with high spatiotemporal resolution. Adv Atmos Sci 31:1127–1135
Luo W, Taylor MC, Parker SR (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28:947–959
Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Comput Stat Data Anal 55:2372–2387
Masseran N, Razali AM, Ibrahim K, Zin WZW, Zaharim A (2012) On spatial analysis of wind energy potential in Malaysia. WSEAS Trans Math 11(6):451–461
Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2015) e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7. https://CRAN.R-project.org/package=e1071
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2017) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900
Naimi B (2015) rts: raster time series analysis. R package version 1.0-10. https://CRAN.R-project.org/package=rts
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I—A discussion of principles. J Hydrol 10:282–290
Öztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers Manag 47:395–406
Palomino I, Martin F (1995) A simple method for spatial interpolation of the wind in complex terrain. J Appl Meteorol 34:1678–1693
Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691
Philippopoulos K, Deligiorgi D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 38:75–82
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://ww.R-project.org/
Rossiter DG (2012) Technical note: cokriging with the gstat package of the R environment for statistical computing. http://www.css.cornell.edu/faculty/dgr2/teach/R/R_ck.pdf. Accessed 11 Nov 2016
Şahin AD (2001) Spatio-temporal modeling winds of Turkey, Unpublished PhD Thesis; Istanbul Technical University, p 286
Şahin AD, Şen Z (2004) A new spatial prediction model and its applications to wind records. Theor Appl Climatol 79:45–54
Schnur R, Lettermaier DP (1998) A case study of statistical downscaling in Australia using weather classification by recursive partitioning. J Hydrol 212–213:362–379
Schölkopf B, Smola A (2002) Learning with kernels. Support vector machines, regularization, optimization and beyond. The MIT Press, Cambridge
Schoof JT (2013) Statistical Downscaling in Climatology. Geogr Compass 7(4):249–265
Sinha SK, Talwalkar DR, Narkhedkar SG, Rajamani S (1989) A scheme for objective analysis of wind field incorporating multi-weighting functions in the optimum interpolation method. Adv Atmos Sci 6(4):435–446
Sinha SK, Narkhedkar SG, Talwalkar DR, Rajamani S (1992) Some experiments with multivariate objective analysis scheme of heights and winds using optimum interpolation. Adv Atmos Sci 9(4):431–440
Sliz-Szkliniarz B, Vogt J (2011) GIS-based approach for the evaluation of wind energy potential: a case study for the Kujawsko–Pomorskie Voivodeship. Renew Sustain Energy Rev 15:1696–1707
Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222
Stoyan D, Stoyan H, Jansen U (1997) Umweltstatistik: statistische verarbeitung und analyse von umweltdaten. Teubner, Stuttgart
Vapnik V (1995) The nature of statistical learning theory. Springer, New York
Venables WN, Ripley BD (2002) Modern applied statistics with S. 4th ed. Springer, New York (ISBN 0-387-95457-0)
Wackernagel H (2010) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin
Walter A (2001) Zur Anwendung neuronaler Netze in der Klimatologie. Berichte des Deutschen Wetterdienstes. Heft 218. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main
Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, Chichester
Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, Oxford
Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall, Boca Raton
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73(1):3–36
Ye W, Hong HP, Wang JF (2015) Comparison of spatial interpolation methods for extreme wind speeds over Canada. J Comput Civ Eng 29(6):401 4095
Zeileis A, Grothendieck G (2005) zoo: S3 infrastructure for regular and irregular time series. J Stat Softw 14(6):1–27
Zlatev Z, Middleton SE, Veres G (2010) Benchmarking knowledge-assisted kriging for automated spatial interpolation of wind measurements. In: Proceedings of the 2010 13th conference on information Fusion (FUSION), Edinburgh, UK
Acknowledgements
By the financial support of the University of Bayreuth, the University of Bayreuth Graduate school and DAAD it was possible to organize and finance field work in Central Asia. Thanks for grammar and spelling correction to Thomas Kolb and Daniela Kretz. The authors also would like to thank the two anonymous reviewers for their helpful comments and suggestions that significantly improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reinhardt, K., Samimi, C. Comparison of different wind data interpolation methods for a region with complex terrain in Central Asia. Clim Dyn 51, 3635–3652 (2018). https://doi.org/10.1007/s00382-018-4101-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-018-4101-y