Skip to main content

Advertisement

Log in

Tree-ring reconstructions of cool season temperature for far southeastern Australia, 1731–2007

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

At the global scale, reconstructions of cool season temperature over past centuries are relatively rare. Here we present 277-year reconstructions of cool season (July–October) temperatures for southern Australia based on three different data sets: a spatial field reconstruction based on highly resolved temperature data from the Australian Water Availability Product data; reconstructions for the four southeast Australian states based on the Berkeley Earth mean temperature data for each state; and reconstructions for individual stations in southeastern Australia from the Australian Bureau of Meteorology’s Australian Climate Observations Reference Network–Surface Air Temperature data. Our reconstructions typically capture 25–50% of the variation over the late twentieth Century calibration period and are strongest for the southern state of Tasmania and the southeastern part of mainland Australia. All three use Tasmanian tree-rings sensitive to cool season temperatures and display similar variability. In the context of our reconstructions, the persistent warming in the observed record since ~ 1950 is unprecedented. While the low frequency variability of winter temperatures is generally in step with that in summer (December–February) temperatures, high frequency variability is not, illustrating the need for seasonal reconstructions to help improve understanding of variability in inter-seasonal dynamics and the historical importance of this on the environment. The reconstructions covary with changes in the Southern Annular Mode and may be useful for future reconstructions of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  • Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56:1–18

    Google Scholar 

  • Allen KJ, Cook ER, Francey RJ, Michael K (2001) The climatic response of Phyllocladus aspleniifolius (Labill.) Hook. F. in Tasmania. J Biogeogr 28:305–316

    Article  Google Scholar 

  • Allen KJ, Ogden J, Buckley BM, Cook ER, Baker PJ (2011) The potential to reconstruct broadscale climate indices associated with Australian droughts from Athrotaxis species, Tasmania. Clim Dyn 37:1799–1821

    Article  Google Scholar 

  • Allen KJ, Drew DM, Downes GM, Evans R, Cook ER, Battaglia M, Baker PJ (2013) A strong regional signal in low elevation Huon pine. J Quat Sci 28:433–438

    Article  Google Scholar 

  • Allen KJ, Nichols SC, Evans R, Allie S, Carson G, Ling F, Cook ER, Lee G, Baker PJ (2017) A 277 year cool season dam inflow reconstruction for Tasmania, southeastern Australia. Water Resour Res. https://doi.org/10.1002/2016WR018906

    Google Scholar 

  • Allen KJ, Cook ER, Francey RJ, Buckley BM, Palmer JG, Peterson MJ, Baker PJ (2018) Lack of cool, not warm extremes distinguishes late 20th Century climate in 979-year Tasmanian summer temperature reconstruction. Environ Res Lett. https://doi.org/10.10888/1748-9326/aaafd7

    Google Scholar 

  • Anchukaitis KJ, Wilson R, Briffa KR, Büntgen U, Cook ER, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B, Hegerl G, Helama S, Klesse S, Krusic P, Linderholm H, Myglan V, Osborn T, Zhang P, Rydval M, Schneider L, Schurer A, Wiles G, Zorita E (2017) Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Q Sci Rev 163:1–22

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in Climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Buckley BM, Cook ER, Peterson MJ, Barbetti M (1997) A changing temperature response with elevation for Lagarostrobos franklinii in Tasmania, Australia. Clim Change 36:477–498

    Article  Google Scholar 

  • Callaghan J, Helman P (2008) Severe storms on the east coast of Australia 1770–2008. Griffith Centre for Coastal Management, Griffith University, Queensland

    Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperature fruit trees in a global warming context; a review. Sci Hortic 130:357–372

    Article  Google Scholar 

  • Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ et al (2013) Phenological Changes in the Southern Hemisphere. PLos One 8(10):e75514. https://doi.org/10.1371/journal.pone.0075514

    Article  Google Scholar 

  • Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22:951–976

    Article  Google Scholar 

  • Chu G, Sun Q, Wang X, Liu M, Lin Y, Xie M, Shang W, Liu J (2011) Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from northeastern China. Holocene 22:785–792

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The Twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Cook ER, Bird T, Peterson M, Barbetti M, Buckley B, D’Arrigo R, Francey R (1992) Climate change over the last millennium reconstructed from tree-rings. Holocene 2:205–217

    Article  Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstruction for the continental United States. J Clim 12:1145–1162

    Article  Google Scholar 

  • Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91

    Article  Google Scholar 

  • Cook ER, Buckley BM, Palmer JG, Fenwick P, Peterson MJ, Boswijk G, Fowler A (2006) Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past present and future. J Q Sci 21:689–699

    Article  Google Scholar 

  • Crimp S, Zheng B, Khimashia N, Gobbett DL, Chapman S, Howden M, Nicholls N (2016) Recent changes in southern Australian frost occurrence: implications for wheat production risk. Crop Pasture Sci 67:801–811

    Article  Google Scholar 

  • CSIRO (2014) State of the Climate 2014. CSIRO and Bureau of Meteorology, Melbourne

    Google Scholar 

  • Darbyshire R, Webb L, Goodwin I, Barlow S (2011) Winter chilling trends for deciduous fruit in Australia. Agric For Meteorol 151:1074–1085

    Article  Google Scholar 

  • Datsenko NM, Shabalova MV, Sonechkin (2001) Seasonality of multidecadal and centennial variability in European temperatures. J Geophys Res 106:12449–12461

    Article  Google Scholar 

  • Dobrovolny P, Moberg A, Bràzdil R, Pfister C, Glasser R, Wilson R, van Engelen A, Limanòwka D, Kiss A, Halíčková M, Mackovà J, Riemann D, Luterbacher J, Böhm R (2010) Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD1500. Clim Change 101:69–107

    Article  Google Scholar 

  • Drew DM, Allen KJ, Downes GM, Evans R, Battaglia M, Baker PJ (2013) Wood properties in a long–lived conifer reveal strong climate signals where ring width series do not. Tree Physiol. https://doi.org/10.1093/treephys/tps111

    Google Scholar 

  • Drosdowsky W (2005) The latitude of the subtropical ridge over eastern Australia: the L index revisited. Int J Climatol 25:1291–1299

    Article  Google Scholar 

  • Duan J, Zhang Q-B, Lv L, Zhang C (2012) Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China. Clim Dyn 39:919–928

    Article  Google Scholar 

  • Duncan RP, Fenwick P, Palmer JG, McGlone M, Turney CSM (2010) Non-uniform interhemispheric temperature trends over the past 550 years. Clim Dyn. https://doi.org/10.1007/s00382-101-0794-2

    Google Scholar 

  • Emile-Geay et al (2017) A global multiproxy database for temperature reconstructions of the Common Era. Sci Data 4:170088

    Article  Google Scholar 

  • Evans K (2012) ‘Antipodean England’? A history of drought, fire and flood in tasmania from European settlement in 1803 to the 1960s. PhD thesis, School of Geography and Environmental Studies, University of Tasmania

  • Friedman AR, Hwang Y-T, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature asymmetry over the Twentieth century and in future projections. J Clim 26:5419–5433

    Article  Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188

    Article  Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9

    Article  Google Scholar 

  • Gergis J, Neukom R, Gallant AJE, Karoly DJ (2016) Australasian temperature reconstructions spanning the last millennium. J Clim 29:5365–5392

    Article  Google Scholar 

  • Gou ZH, Chen FH, Yang MX, Jacoby G, Fang KY, Tian QH, Zhang Y (2008) Asymmetric variability between maximum and minimum temperatures in northeastern Tibetan Plateau: evidence form tree rings. Sci China Ser D Earth Sci 51:41–55

    Article  Google Scholar 

  • Hendon HH, Thompson DW, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode. J Clim 20:2452–2467

    Article  Google Scholar 

  • Holz GK, Grose MR, Bennett JC, Corney SP, White CJ, Phelan D, Potter K, Kriticos D, Rawnsley R, Parsons D, Lisson S, Gaynor SM, Bindoff NL (2010) Climate futures for Tasmania: impacts on agriculture technical report, antarctic climate and ecosystems cooperative research centre, Hobart, Tasmania

  • Jones PD, Moberg A (2003) Hemispheric and large-scale air temperature variations: an extensive revision and update to 2001. J Clim 16:206–223

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Article  Google Scholar 

  • Karoly DJ, Braganza K (2005) Attribution of recent temperature changes in the Australian region. J Clim 18:457–464

    Article  Google Scholar 

  • Larsen SH, Nicholls N (2009) Southern Australian rainfall and the subtropical ridge: variations, interrelationships and trends. Geophys Res Lett. https://doi.org/10.1029/2009GRL037786

    Google Scholar 

  • Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter-spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141

    Article  Google Scholar 

  • Liang X-Z, Wu Y, Chambers RG, Schmoldt DL, Gao W, Liu C, Liu Y-A, Sun C, Kennedy JA (2017) Determining climate effects on US total agricultural productivity. Proc Natl Acad Sci 114:3091–3096

    Article  Google Scholar 

  • Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–229

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Lynch-Stieglitz J (2004) Hemispheric asynchrony of abrupt climate change. Science 304:1919–1920

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • McGowan H, Callow JN, Soderholm J, McGrath G, Campbell M, Zhao J (2018) Global warming in the context of 2000 years of Australian alpine temperature and snow cover. Sci Rep 8:4394. https://doi.org/10.1038/s41598-018-22766-z

    Article  Google Scholar 

  • Measham PF, Quentin AG, MacNair N (2014) Climate, winter chill, and decision-making in Sweet Cherry production. HortScience 49:254–259

    Article  Google Scholar 

  • Mitchell PJ, O’Grady AP, Hayes KR, Pinkard EA (2014) Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol Evol 4:1088–1101. https://doi.org/10.1002/ece3.1008

    Article  Google Scholar 

  • Monerie P, Moine M-P, Terray L, Valcke S (2017) Quantifying the impact of early 21st Century volcanic eruptions on global-mean surface temperature. Environ Res Lett 12:054010. https://doi.org/10.1088/1748-9326/aa6cb5

    Article  Google Scholar 

  • Mosedale JR, Wilson RJ, Maclean IMD (2015) Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PloS One 10:e0141218. https://doi.org/10.1371/journal.pone.0141218

    Article  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Wanner H, Aravena JC, Black DE, Christie DA, D’Arrigo RD, Lara A, Morales M, Soliz-Gamboa C, Srur A, Urrutia R, von Gunten L (2010) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51

    Article  Google Scholar 

  • Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, Gonzàlez-Rouco F, Linsley BK, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Zinke J, Frank D (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4:362–367

    Article  Google Scholar 

  • Nicholls N (2003) Continued anomalous warming in Australia. Geophys Res Lett 30:1370. https://doi.org/10.1029/2003GL017037

    Article  Google Scholar 

  • Nicholls N (2004) The changing nature of Australian droughts. Clim Change 63:323–336

    Article  Google Scholar 

  • O’Kane TJ, Risbey JS, Monselesan D, Horenko I, Franzke CLE (2016) On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Clim Dyn 46:3567–3597

    Article  Google Scholar 

  • Pearl JK, Anchukaitis KJ, Pederson N, Donnelly J (2017) Reconstructing Northeastern United States temperatures using Atlantic white cedar tree rings. Environ Res Lett 12:114012. https://doi.org/10.1088/1748-9326/aa8f1b

    Article  Google Scholar 

  • Pook M, Gibson T (1999) Atmospheric blocking and storm tracks during SOP-1 of the FROST Project. Aust Meteorol Mag 48:51–60

    Google Scholar 

  • Power S, Tseitkin F, Torok S, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes. Aust Meteorol Mag 47:85–101

    Google Scholar 

  • Pritzkow C, Wazny T, Heuβner KU, Slowinski M, Bieber A, Dorado Liñan I, Helle G, Heinrich I (2016) Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robus) in N-Poland. Palaeogeography,. Palaeoclimatol Palaeoecol 449:520–530

    Article  Google Scholar 

  • Read J, Busby JR (1990) Comparative responses to temperature of the major canopy species of Tasmanian cool temperate rainforest and their ecological significance. II. Net photosynthesis and climate analysis. Aust J Bot 38:185–205

    Article  Google Scholar 

  • Ridgway KR (2007) Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics. J Geophys Res. https://doi.org/10.1029/2006JC003898

    Google Scholar 

  • Riedwyl N, Luterbacher J, Wanner H (2008) An ensemble of European summer and winter temperature reconstructions back to 1500. Geophys Res Lett. https://doi.org/10.1029/2008GL035395

    Google Scholar 

  • Rohde R, Muller R, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickham C, Mosher S (2013) Berkeley earth temperature averaging process. Geoinform Geostat Overv https://doi.org/10.4172/gigs.1000103

    Google Scholar 

  • Rossi S, Deslauriers A, Gricar J, Seo J-W, Rathberger CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008a) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008b) Age-dependent xylogensis in timberline conifers. New Phytol 177:199–208

    Google Scholar 

  • Speer MS, Leslie LM, Fierro AO (2011) Australian east coast rainfall decline related to large scale climate drivers. Clim Dyn 36:1419–1429

    Article  Google Scholar 

  • Trewin B (2013) A daily homogenized temperature data set for Australia. Int J Climatol 33:1510–1529

    Article  Google Scholar 

  • Ukhvatkina ON, Omelko AM, Zhmerenetsky AA, Petrenko TY (2017) Autumn–winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeast Asia since 1509 AD. Clim Past Discuss. https://doi.org/10.5194/cp-2017-98

    Google Scholar 

  • Villalba R, Lara A, Masiokas MH, Urrutia R, Luckman BH, Marshall GJ, Mundo IA, Christie DA, Cook ER, Neukom R, Allen K, Fenwick P, Boninsegna JA, Srur AM, Morales MS, Araneo D, Palmer JG, Cuq E, Aravena JC, Holz A, LeQuesne C (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat Geosci 5:793–798

    Article  Google Scholar 

  • Vinod HD, Lòpez-de-Lacalle J (2009) Maximum entropy bootstrap for time series: the meboot R package. J Stat Softw 29:1–19

    Article  Google Scholar 

  • Visbeck M (2009) A station-based Southern Annular Mode Index from 1884 to 2005. J Clim 22:940–950

    Article  Google Scholar 

  • Visser M, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B 272:2561–2569

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 53(15):713. https://doi.org/10.1029/2005GL023424

    Google Scholar 

  • Yadav R, Park W-K, Bhattacharyya A (1999) Spring-temperature variations in western Himalaya, India, as reconstructed from tree-rings: AD 1390–1987. Holocene 9:85–90

    Article  Google Scholar 

  • Yonenobu H, Eckstein D (2006) Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys Res Lett 33:L10701. https://doi.org/10.1029/2006GL026170

    Article  Google Scholar 

  • Zhang R, Yuan Y, Wei W, Gou X, Yu S, Shang H, Chen F, Zhang T, Qin L (2015) Dendroclimatic reconstruction of autumn-winter mean minimum temperature in the eastern Tibet Plateau since 1600 AD. Dendrochronologia 33:1–7

    Article  Google Scholar 

  • Zhu HF, Fang XQ, Shao XM, Yin ZY (2009) Tree ring-based February–April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon. Clim Past 5:1–6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mike Sumner for assistance with coding and Martin Visbeck for the SAM indices. Jonathan Palmer made constructive comments on an early draft of this manuscript. Tree-ring data used in this study are available from the International Tree-ring Databank (ITRDB), and reconstructions can be obtained from the corresponding author. KA was supported by Australian Research Council grants DP087844 and LP1202811. This is Lamont-Doherty contribution no. 8278. The Dobrovolny data were sourced from the NOAA website at http://www.ncdc.noaa.gov. We thank two anonymous reviewers for their suggestions that have helped improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Allen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13520 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, K.J., Anchukaitis, K.J., Grose, M.G. et al. Tree-ring reconstructions of cool season temperature for far southeastern Australia, 1731–2007. Clim Dyn 53, 569–583 (2019). https://doi.org/10.1007/s00382-018-04602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-04602-2

Keywords

Navigation