Changes of tropical cyclone landfalls in South China throughout the twenty-first century

Abstract

The nested regional climate/mesoscale modelling system developed by the authors is applied to the Hadley Centre Global Environment Model version 2-Earth System global model outputs to project future changes of landfalling tropical cyclone (TC) activity in the South China region. Results show that the modelling system is capable of reproducing the current TC landfall climatology, although it exhibits a noticeable southward bias of TC activity of in the western North Pacific. Future projections show a continuous northward migration of TC activity in the western North Pacific throughout the twenty-first century. Fewer TCs making landfall in South China are projected in the late century, but these landfalling TCs tend to be more intense. Investigations in the large-scale environment suggest that despite warmer sea surface temperature and weaker vertical wind shear, the drier and less cyclonic lower atmosphere all-season is responsible for the reduced TC activity. However, once a TC is formed, the environment it stays in is as wet as today and so it can intensify further than the present-day TCs. Inter-annual variability is also explored, and the influence of the ENSO variation appears to be smaller.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Au-Yeung AYM, Chan JCL (2012) Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific. Clim Dyn 39(3–4):783–794. https://doi.org/10.1007/s00382-011-1268-x

    Article  Google Scholar 

  2. Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65(3):233–240. https://doi.org/10.1007/BF01030791

    Article  Google Scholar 

  3. Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. interannual to interdecadal variability. J Geophys Res 107(D24):4801. https://doi.org/10.1029/2001JD000776

    Article  Google Scholar 

  4. Black ML, Gamache JF, Marks FD, Samsury CE, Willoughby HE (2002) Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: the effect of vertical shear on structure and intensity. Mon Weather Rev 130(9):2291–2312. https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2

    Article  Google Scholar 

  5. Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26(24):9880–9902. https://doi.org/10.1175/JCLI-D-12-00549.1

    Article  Google Scholar 

  6. Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20(19):4819–4834. https://doi.org/10.1175/JCLI4282.1

    Article  Google Scholar 

  7. Chan JCL (2006) Comment on changes in tropical cyclone number, duration, and intensity in a warming environment. Science 311(5768):1713. https://doi.org/10.1126/science.1121522

    Article  Google Scholar 

  8. Chan JCL, Xu M (2009) Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: time series analysis. Int J Climatol 29(9):1285–1293. https://doi.org/10.1002/joc.1782

    Article  Google Scholar 

  9. Chen C, Cane MA, Wittenberg AT, Chen D (2017a) ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J Clim 30(2):775–801. https://doi.org/10.1175/JCLI-D-15-0901.1

    Article  Google Scholar 

  10. Chen TC, Tsay JD, Matsumoto J, Alpert J (2017b) Impact of the summer monsoon westerlies on the South China Sea tropical cyclone genesis in May. Weather Forecast 32(3):925–947. https://doi.org/10.1175/WAF-D-16-0189.1

    Article  Google Scholar 

  11. Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33(24):L24,709. https://doi.org/10.1029/2006GL028026

    Article  Google Scholar 

  12. Chu JH, Sampson CR, Levine AS, Edward F (2002) The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Report, Joint Typhoon Warning Center, Pearl Harbor (United States). http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html. Accessed 1 Sep 2017

  13. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  14. Dickinson RE, A AS, Kennedy PJ, Wilson MF (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR Community Climate Model. Technical Note TN-275+STR, National Center for Atmospheric Research, Boulder, Colorado (United States). https://opensky.ucar.edu/islandora/object/technotes:383/datastream/PDF/view. Accessed 1 Sep 2017

  15. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688. https://doi.org/10.1038/nature03906

    Article  Google Scholar 

  16. Emanuel K, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61(7):843–858. https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2

    Article  Google Scholar 

  17. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci 43(6):585–605. https://doi.org/10.1175/1520-0469(1986) 043<0585:AASITF>2.0.CO;2

    Article  Google Scholar 

  18. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401(6754):665–669. https://doi.org/10.1038/44326

    Article  Google Scholar 

  19. Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci USA 110(30):12,219–12,224. https://doi.org/10.1073/pnas.1301293110

    Article  Google Scholar 

  20. Emanuel KA, Nolan DS (2004) Tropical cyclone activity and the global climate system. In: 26th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, Miami (United States)

  21. Emanuel KA, Živković Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782. https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2

    Article  Google Scholar 

  22. Ferrier BS, Jin Y, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. In: 19th conference on weather analysis and forecasting/15th conference on numerical weather prediction, American Meteorological Society, San Antonio (United States)

  23. Goh AZC, Chan JCL (2010) Interannual and interdecadal variations of tropical cyclone activity in the south China sea. Int J Climatol 30(6):827–843. https://doi.org/10.1002/joc.1943

    Article  Google Scholar 

  24. Holland G, Bruyère CL (2014) Recent intense hurricane response to global climate change. Clim Dyn 42(3):617–627. https://doi.org/10.1007/s00382-013-1713-0

    Article  Google Scholar 

  25. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

    Article  Google Scholar 

  26. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  27. Huang WR, Chan JCL (2014) Dynamical downscaling forecasts of western North Pacific tropical cyclone genesis and landfall. Clim Dyn 42(7):2227–2237. https://doi.org/10.1007/s00382-013-1747-3

    Article  Google Scholar 

  28. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  29. Kerns BW, Chen SS (2013) Cloud clusters and tropical cyclogenesis: developing and nondeveloping systems and their large-scale environment. Mon Weather Rev 141(1):192–210. https://doi.org/10.1175/MWR-D-11-00239.1

    Article  Google Scholar 

  30. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). Technical Note TN-420+STR, National Center for Atmospheric Research, Boulder, Colorado (United States). https://opensky.ucar.edu/islandora/object/technotes:187/datastream/PDF/view. Accessed 1 Sep 2017

  31. Klotzbach PJ, Landsea CW (2005) Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 years. J Clim 28(19):7621–7629. https://doi.org/10.1175/JCLI-D-15-0188.1

    Article  Google Scholar 

  32. Knutson TR, McBride JL, Chan JCL, Emanuel KA, Holland GJ, Landsea C, Held IM, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163. https://doi.org/10.1038/ngeo779

    Article  Google Scholar 

  33. Knutson TR, Sirutis JJ, Vecchi GA, Garner S, Zhao M, Kim HS, Bender M, Tuleya RE, Held IM, Villarini G (2013) Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J Clim 26(17):6591–6617. https://doi.org/10.1175/JCLI-D-12-00539.1

    Article  Google Scholar 

  34. Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28(18):7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1

    Article  Google Scholar 

  35. Liang J, Wang C, Hodges KI (2017) Evaluation of tropical cyclones over the South China Sea simulated by the 12 km MetUM regional climate model. Q J R Meteorol Soc 143(704):1641–1656. https://doi.org/10.1002/qj.3035

    Article  Google Scholar 

  36. Liu KS, Chan JCL (2017a) Variations in the power dissipation index in the East Asia region. Clim Dyn 48(5):1963–1985. https://doi.org/10.1007/s00382-016-3185-5

    Article  Google Scholar 

  37. Liu KS, Chan JCL (2017b) Changing relationship between La Ni\(\tilde{\text{ n }}\)a and tropical cyclone landfalling activity in South China (La Ni\(\tilde{\text{ n }}\)a and TC landfalling activity in South China). Int J Climatol Adv. https://doi.org/10.1002/joc.5242

    Article  Google Scholar 

  38. Lok CCF, Chan JCL (2017) Simulating seasonal tropical cyclone intensities at landfall along the South China coast. Clim Dyn Adv. https://doi.org/10.1007/s00382-017-3762-2

    Article  Google Scholar 

  39. McBride JL, Zehr R (1981) Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J Atmos Sci 38(6):1132–1151. https://doi.org/10.1175/1520-0469(1981) 038<1132:OAOTCF>2.0.CO;2

    Article  Google Scholar 

  40. McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44(11):3237–3260. https://doi.org/10.1007/s00382-014-2418-8

    Article  Google Scholar 

  41. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  42. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofizicheskogo Instituta. Akademiya Nauk SSSR 24(151):163–187

    Google Scholar 

  43. Murakami H, Wang B (2010) Future change of north Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Clim 23(10):2699–2721. https://doi.org/10.1175/2010JCLI3338.1

    Article  Google Scholar 

  44. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29,579–29,594. https://doi.org/10.1029/2000JD900415

    Article  Google Scholar 

  45. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409. https://doi.org/10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  46. Park DSR, Ho CH, Chan JCL, Ha KJ, Kim HS, Kim J, Kim JH (2017) Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections. Sci Rep 7(41):354. https://doi.org/10.1038/srep41354

    Article  Google Scholar 

  47. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  48. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128(5):1366–1383. https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2

    Article  Google Scholar 

  49. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  50. Tory KJ, Chand SS, McBride JL, Ye H, Dare RA (2013) Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project. J Clim 26(24):9946–9959. https://doi.org/10.1175/JCLI-D-13-00010.1

    Article  Google Scholar 

  51. Tory KJ, Chand SS, McBride JL, Ye H, Dare RA (2014) Projected changes in late 21st century tropical cyclone frequency in CMIP5 models. In: 31th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, San Diego (United States). https://ams.confex.com/ams/31Hurr/webprogram/Paper245100.html. Accessed 1 Sep 2017

  52. Villarini G, Vecchi GA (2012) Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat Clim Change 2(8):604–607. https://doi.org/10.1038/nclimate1530

    Article  Google Scholar 

  53. Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the western North Pacific. J Clim 15(13):1643–1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2

    Article  Google Scholar 

  54. Wang C, Liang J, Hodges KI (2017) Projections of tropical cyclones affecting Vietnam under climate change: downscaled HadGEM2-ES using PRECIS 2.1. Q J R Meteorol Soc 143(705):1844–1859. https://doi.org/10.1002/qj.3046

    Article  Google Scholar 

  55. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846. https://doi.org/10.1126/science.1116448

    Article  Google Scholar 

  56. Ying M, Knutson TR, Kamahori H, Lee TC (2012) Impacts of climate change on tropical cyclones in the western North Pacific basin Part II: late twenty-first century projections. Trop Cycl Res Rev 1(2):231–241. https://doi.org/10.6057/2012TCRR02.09

    Article  Google Scholar 

  57. Yoshida R, Miyamoto Y, Tomita H, Kajikawa Y (2017) The effect of water vapor on tropical cyclone genesis: a numerical experiment of a non-developing disturbance observed in PALAU2010. J Meteorol Soc Jpn 95(1):35–47. https://doi.org/10.2151/jmsj.2017-001

    Article  Google Scholar 

  58. Yun KS, Yeh SW, Ha KJ (2016) Inter-El Ni\(\tilde{\text{ n }}\)o variability in CMIP5 models: model deficiencies and future changes. J Geophys Res 121(8):3894–3906. https://doi.org/10.1002/2016JD024964

    Article  Google Scholar 

  59. Zhang L, Karnauskas KB, Donnelly JP, Emanuel K (2017) Response of the North Pacific tropical cyclone climatology to global warming: application of dynamical downscaling to CMIP5 models. J Clim 30(4):1233–1243. https://doi.org/10.1175/JCLI-D-16-0496.1

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ralf Toumi and an anonymous reviewer for their constructive comments on this manuscript. This paper is part of the PhD project of the first author, and the study is supported by a Research Studentship from the City University of Hong Kong and Research Grants Council General Research Fund (Grant numbers CityU 100113 and E-CityU101/16). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the Met Office Hadley Centre for producing and making available the HadGEM2-ES model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charlie C. F. Lok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lok, C.C.F., Chan, J.C.L. Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Clim Dyn 51, 2467–2483 (2018). https://doi.org/10.1007/s00382-017-4023-0

Download citation

Keywords

  • Tropical cyclone landfall
  • Tropical cyclone intensity
  • Climate projection
  • Downscaling
  • Regional climate model
  • WRF
  • East Asia