Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data

Abstract

In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071–2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias-corrected and uncorrected extremes, can be considered in future policy making.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ahmed R (2003) Climate of Bangladesh. Banglapedia 45–48

  2. Ahmed AU (2006) Bangladesh climate change impacts and vulnerability: a synthesis. In: Report of Climate Change Cell, Department Of Environment, Government of the People’s Republic of Bangladesh

  3. Alexander LV, Arblaster JM (2017) Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather Clim Extrem 15:34–56. https://doi.org/10.1016/j.wace.2017.02.001

    Article  Google Scholar 

  4. Ali K, Islam A (2014) Assessing risks from climate variability and change for disaster-prone zones in Bangladesh. Int J Disaster Risk Reduct 10:236–249. https://doi.org/10.1016/j.ijdrr.2014.08.008

    Article  Google Scholar 

  5. Amengual A, Homar V, Romero R et al (2012) Projections of the climate potential for tourism at local scales: application to Platja de Palma, Spain. Int J Climatol 32:2095–2107. https://doi.org/10.1002/joc.2420

    Google Scholar 

  6. Apurv T, Mehrotra R, Sharma A et al (2015) Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. J Hydrol 527:281–291. https://doi.org/10.1016/j.jhydrol.2015.04.056

    Article  Google Scholar 

  7. Barros VR, Field CB, Dokken DJ et al (2014) IPCC AR5. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–51

    Google Scholar 

  8. Bennett JC, Grose MR, Corney SP et al (2014) Performance of an empirical bias-correction of a high-resolution climate dataset. Int J Climatol 34:2189–2204. https://doi.org/10.1002/joc.3830

    Article  Google Scholar 

  9. Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012) Regional climate model applications on sub-regional scales over the Indian monsoon region: the role of domain size on downscaling uncertainty. J Geophys Res Atmos 117:1–12. https://doi.org/10.1029/2012JD017956

    Google Scholar 

  10. Bhatt BC, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation Radar. Mon Weather Rev 133:149–165. https://doi.org/10.1175/MWR-2846.1

    Article  Google Scholar 

  11. Bieniek PA, Bhatt US, Walsh JE et al (2016) Dynamical downscaling of ERA-interim temperature and precipitation for Alaska. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-15-0153.1

    Google Scholar 

  12. Bürger G, Schulla J, Werner AT (2011) Estimates of future flow, including extremes, of the Columbia river headwaters. Water Resour Res 47:1–18. https://doi.org/10.1029/2010WR009716

    Article  Google Scholar 

  13. Caesar J, Janes T, Lindsay A, Bhaskaran B (2015) Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environ Sci Process Impacts 17:1047–1056. https://doi.org/10.1039/C4EM00650J

    Article  Google Scholar 

  14. Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28:6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

    Article  Google Scholar 

  15. Chaturvedi RK, Joshi J, Jayaraman M et al (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–802

    Google Scholar 

  16. Christidis N, Stott PA (2016) Attribution analyses of temperature extremes using a set of 16 indices. Weather Clim Extrem 14:24–35. https://doi.org/10.1016/j.wace.2016.10.003

    Article  Google Scholar 

  17. Dankers R, Christensen OB, Feyen L et al (2007) Evaluation of very high-resolution climate model data for simulating flood hazards in the Upper Danube basin. J Hydrol 347:319–331. https://doi.org/10.1016/j.jhydrol.2007.09.055

    Article  Google Scholar 

  18. Dastagir MR (2015) Modeling recent climate change induced extreme events in Bangladesh: a review. Weather Clim Extrem 7:49–60. https://doi.org/10.1016/j.wace.2014.10.003

    Article  Google Scholar 

  19. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  20. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26. https://doi.org/10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  21. Devanand A, Ghosh S, Paul S et al (2017) Multi-ensemble regional simulation of Indian monsoon during contrasting rainfall years: role of convective schemes and nested domain. Clim Dyn 0:1–21. https://doi.org/10.1007/s00382-017-3864-x

    Google Scholar 

  22. Ehret U, Zehe E, Wulfmeyer V et al (2012) HESS opinions “should we apply bias correction to global and regional climate model data?” Hydrol Earth Syst Sci 16:3391–3404. https://doi.org/10.5194/hess-16-3391-2012

    Article  Google Scholar 

  23. ETCCDI (2016) ETCCDI Extremes Indices Archiveo Title. In: ETCCDI Extrem. Indices Arch. http://www.cccma.ec.gc.ca/data/climdex/. Accessed 1 Jan 2016

  24. Freychet N, Hsu HH, Chou C, Wu CH (2015) Asian summer monsoon in CMIP5 projections: a link between the change in extreme precipitation and monsoon dynamics. J Clim 28:1477–1493. https://doi.org/10.1175/JCLI-D-14-00449.1

    Article  Google Scholar 

  25. Ghimire S, Choudhary A, Dimri AP (2015) Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I. Clim Dyn. https://doi.org/10.1007/s00382-015-2747-2

    Google Scholar 

  26. Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour. https://doi.org/10.1146/annurev-environ-102014-021217

    Google Scholar 

  27. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability ensemble averaging”(REA) method. J Clim 15:1141–1158. https://doi.org/10.1175/1520-0442(2003)016<0883:COCOAU>2.0.CO;2

    Article  Google Scholar 

  28. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58:175

    Google Scholar 

  29. Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129. https://doi.org/10.1016/S0022-1694(00)00144-X

    Article  Google Scholar 

  30. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  31. Hartmann DL, Tank AMGK., Rusticucci M (2013) IPCC fifth assessment report, climatie change 2013: the physical science basis. IPCC AR5, pp 31–39

  32. Hasan MA, Islam AKMS (2013) Changes of seasonal temperature extremes in future over Bangladesh using projections by a regional climate model. In: National seminar on climate change impact and adaptation, pp 116–120

  33. Hasan MA, Islam AKMS, Bhaskaran B (2013) Predicting future precipitation and temperature over Bangladesh using high resolution regional scenarios generated by multi-member ensemble climate. In: 4th international conference on water & flood management (ICWFM-2013). Dhaka, Bangladesh, pp 575–582

  34. Ho CK, Stephenson DB, Collins M et al (2012) Calibration strategies a source of additional uncertainty in climate change projections. Bull Am Meteorol Soc 93:21–26. https://doi.org/10.1175/2011BAMS3110.1

    Article  Google Scholar 

  35. Hong SY, Kanamitsu M (2014) Dynamical downscaling: fundamental issues from an NWP point of view and recommendations. Asia Pac J Atmos Sci 50:83–104. https://doi.org/10.1007/s13143-014-0029-2

    Article  Google Scholar 

  36. Huffman GJ, Adler RF, Arkin P et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  37. Hussain MA, Islam AKMS., Hasan MA (2013) Changes of the seasonal salinity distribution at the Sundarbans Coast due to impact of climate change. 4th Int Conf Water Flood Manag 4:637–648

    Google Scholar 

  38. IPCC (2007) IPCC fourth assessment report (AR4). IPCC 1:976

    Google Scholar 

  39. IPCC (2013) Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  40. Iqbal W, Syed FS, Sajjad H et al (2017) Mean climate and representation of jet streams in the CORDEX South Asia simulations by the regional climate model RCA4. Theor Appl Climatol 129:19

    Article  Google Scholar 

  41. Islam S, Miah S (2003) Banglapedia: national encyclopedia of Bangladesh. Banglapedia Trust, Asiatic Society of Bangladesh

  42. Islam MN, Terao T, Uyeda H et al (2005) Spatial and temporal variations of precipitation in and around Bangladesh. J Meteorol Soc Japan 83:21–39. https://doi.org/10.2151/jmsj.83.21

    Article  Google Scholar 

  43. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129. https://doi.org/10.1007/BF01025368

    Article  Google Scholar 

  44. Jacob D, Elizalde A, Haensler A et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere (Basel) 3:181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  45. Jang S, Kavvas ML (2014) Statistical downscaling versus dynamic downscaling: an assessment based upon a sample study. In: World Environmental and Water Resources Congress 2014. American Society of Civil Engineers, Reston, pp 591–595

    Google Scholar 

  46. Jayasankar CB, Surendran S, Rajendran K (2015) Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: role of seasonal cycle and interannual variability. Geophys Res Lett. https://doi.org/10.1002/2015GL063659

    Google Scholar 

  47. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  48. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. The representation of cumulus convection in numerical models. Springer, Berlin, pp 165–170

    Google Scholar 

  49. Kang S, Hur J, Ahn JB (2014) Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea. Int J Climatol 2005:3801–3810. https://doi.org/10.1002/joc.3952

    Article  Google Scholar 

  50. Khandu K, Awange JL, Forootan E (2015) An evaluation of high-resolution gridded precipitation products over Bhutan (1998–2012). Int J Climatol 1087:1067–1087. https://doi.org/10.1002/joc.4402

    Google Scholar 

  51. Kis A, Pongracz R, Bartholy J (2017) Multi-model analysis of precipitation-related climatological extremes for the Carpathian region. Int J Climatol 17:2100. https://doi.org/10.1002/joc.5104

    Google Scholar 

  52. Knutti R, Sedláček J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. https://doi.org/10.1038/nclimate1716

    Google Scholar 

  53. Kumar P, Sein D, Cabos W, Jacob D (2014) Improvement of simulated monsoon precipitation over South-Asia with a regionally coupled model ROM. In: 3rd International Lund Regional-Scale Climate Modelling Workshop 21st Century Challenges in Regional Climate Modelling: Workshop proceedings. Lund, Sweden, p 434

  54. Kumar P, Wiltshire A, Mathison C et al (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ 468–469:S18–S30. https://doi.org/10.1016/j.scitotenv.2013.01.051

    Article  Google Scholar 

  55. Lee JW, Hong SY (2014) Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor Appl Climatol 117:667–677. https://doi.org/10.1007/s00704-013-1034-6

    Article  Google Scholar 

  56. Lee JW, Hong SY, Chang EC et al (2014) Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim Dyn 42:733–747. https://doi.org/10.1007/s00382-013-1841-6

    Article  Google Scholar 

  57. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012882

    Google Scholar 

  58. Macadam I, Argüeso D, Evans JP et al (2016) The effect of bias correction and climate model resolution on wheat simulations forced with a regional climate model ensemble. Int J Climatol 4591:4577–4591. https://doi.org/10.1002/joc.4653

    Article  Google Scholar 

  59. McGregor JL (2005) CSIRO Atmospheric Research technical paper. In: C-CAM: Geometric aspects and dynamical formulation. CSIRO Atmospheric Research, p 43

  60. Mcgregor J, Katzfey J, Thatcher M et al (2013) An Update on CCAM Modeling Activities at CSIRO. In: 30th Annual conference of the South African Society for Atmospheric Science. Potchefstoom, South Africa, pp 51–53

  61. Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17:3921–3936. https://doi.org/10.5194/hess-17-3921-2013

    Article  Google Scholar 

  62. Mirza MMQ, Warrick RA, Ericksen NJ (2003) The implications of climate change on floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh. Clim Change 57:287–318

    Article  Google Scholar 

  63. Mittal N, Mishra A, Singh R, Kumar P (2014) Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models. Clim Change 123:273–286. https://doi.org/10.1007/s10584-014-1056-9

    Article  Google Scholar 

  64. Murshed SB, Nowreen S, Islam AKMS et al (2013) Change of extreme precipitation indices for the eight hydrological regions of Bangladesh. In: International conference on climate change impact and adaptation (I3CIA-2013), pp 462–471

  65. Nowreen S, Murshed SB, Islam AKMS. et al (2014) Changes of rainfall extremes around the haor basin areas of Bangladesh using multi-member ensemble RCM. Theor Appl Climatol. https://doi.org/10.1007/s00704-014-1101-7

    Google Scholar 

  66. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  67. Paul S, Liu CM, Chen JM, Lin SH (2008) Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output. J Geophys Res Atmos 113:1–16. https://doi.org/10.1029/2007JD009472

    Article  Google Scholar 

  68. Prasannaa V, Subere J, Das DK, Govindarajan C, Srinivasan Yasunarid T (2007) Development of daily gridded rainfall dataset over the Ganga, Brahmaputra and Meghna river basins. Meteorol Appl 14:117–129. https://doi.org/10.1002/met.13

    Article  Google Scholar 

  69. Prein AF, Langhans W, Fosser G et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  70. Rahman MM, Islam MN, Ahmed AU, Georgi F (2012a) Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM. J Earth Syst Sci 121:287–295. https://doi.org/10.1007/s12040-012-0159-9

    Article  Google Scholar 

  71. Rahman MM, Islam MN, Ahmed AU, Georgi F (2012b) Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM. J Earth Syst Sci 121:287–295. https://doi.org/10.1007/s12040-012-0159-9

    Article  Google Scholar 

  72. Rahman MM, Singh Arya D, Goel NK, Mitra AK (2012c) Rainfall statistics evaluation of ECMWF model and TRMM data over Bangladesh for flood related studies. Meteorol Appl 19:501–512. https://doi.org/10.1002/met.293

    Article  Google Scholar 

  73. Rajib MA, Rahman MM (2012) A comprehensive modeling study on regional climate model (RCM) application—regional warming projections in monthly resolutions under IPCC A1B scenario. Atmosphere (Basel) 3:557–572. https://doi.org/10.3390/atmos3040557

    Article  Google Scholar 

  74. Rajib MA, Rahman M, Mcbean EA (2011) Global warming in Bangladesh perspective: temperature projections upto 2100. In: Proceedings of the Global Conference on Global Warming 2011, Lisbon, pp 43–48

    Google Scholar 

  75. Raneesh K, Thampi S (2013) Climatology & weather forecasting bias correction for RCM predictions of precipitation and temperature in the Chaliyar river basin. J Climatol Weather Forecast 1:1–6. https://doi.org/10.4172/2332-2594.1000105

    Google Scholar 

  76. Rao KK, Patwardhan SK, Kulkarni A et al (2014) Projected changes in mean and extreme precipitation indices over India using PRECIS. Glob Planet Change 113:77–90. https://doi.org/10.1016/j.gloplacha.2013.12.006

    Article  Google Scholar 

  77. Revadekar JV, Patwardhan SK, Rupa Kumar K (2011) Characteristic features of precipitation extremes over India in the warming scenarios. Adv Meteorol 2011:1–11. https://doi.org/10.1155/2011/138425

    Article  Google Scholar 

  78. Salvi K, Ghosh S, Ganguly AR (2016) Credibility of statistical downscaling under nonstationary climate. Clim Dyn 46:1991–2023. https://doi.org/10.1007/s00382-015-2688-9

    Article  Google Scholar 

  79. Samuelsson P, Jones CG, Willén U et al (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus Ser A Dyn Meteorol Oceanogr 63:4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  80. Schiermeier Q (2011) Increased flood risk linked to global warming. Nature 470:316

    Article  Google Scholar 

  81. Shahid S (2010) Rainfall variability and the trends of wet and dry periods in Bangladesh. Int J Climatol 30:2299–2313. https://doi.org/10.1002/joc.2053

    Article  Google Scholar 

  82. Shahid S (2011) Trends in extreme rainfall events of Bangladesh. Theor Appl Climatol 104:489–499. https://doi.org/10.1007/s00704-010-0363-y

    Article  Google Scholar 

  83. Sharmila S, Joseph S, Sahai a K et al (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78. https://doi.org/10.1016/j.gloplacha.2014.11.004

    Article  Google Scholar 

  84. Shashikanth K, Salvi K, Ghosh S, Rajendran K (2014) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15:79–85. https://doi.org/10.1002/asl2.466

    Article  Google Scholar 

  85. Simpson J, Adler RF, North GR (1988) A proposed tropical rainfall measuring mission (TRMM) satellite. Bull Am Meteorol Soc 69:278–295

    Article  Google Scholar 

  86. Singh D (2015) South Asian monsoon: Tug of war on rainfall changes. Nat Clim Chang 6:20–22. https://doi.org/10.1038/nclimate2901

    Article  Google Scholar 

  87. Song C, Ke L, Richards KS, Cui Y (2015) Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations. Int J Climatol. https://doi.org/10.1002/joc.4403

    Google Scholar 

  88. Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690. https://doi.org/10.1002/qj.49710444110

    Article  Google Scholar 

  89. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  90. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  91. Teichmann C, Eggert B, Elizalde A et al (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: a study over different CORDEX regions using REMO. Atmosphere (Basel) 4:214–236. https://doi.org/10.3390/atmos4020214

    Article  Google Scholar 

  92. Themeßl JM, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. https://doi.org/10.1002/joc.2168

    Article  Google Scholar 

  93. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  94. Wilcke RAI (2014) Evaluation of multi-variable quantile mapping on regional climate models (PhD thesis). University of Graz

  95. Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Change 120:871–887. https://doi.org/10.1007/s10584-013-0845-x

    Article  Google Scholar 

  96. Wood R, Field PR (2011) The distribution of cloud horizontal sizes. J Clim 24:4800–4816. https://doi.org/10.1175/2011JCLI4056.1

    Article  Google Scholar 

  97. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

    Article  Google Scholar 

  98. Yatagai A, Xie P, Alpert P (2007) Development of a daily gridded precipitation data set for the Middle East. Adv Geosci 12:165–170. https://doi.org/10.5194/adgeo-12-165-2008

    Article  Google Scholar 

  99. Yatagai A, Kamiguchi K, Arakawa O et al (2012) Aphrodite constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  100. Zhang H, Fraedrich K, Blender R, Zhu X (2013) Precipitation extremes in CMIP5 simulations on different time scales. J Hydrometeorol 14:923–928. https://doi.org/10.1175/JHM-D-12-0181.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the NASA Health and Air Quality Program (Grant Number NNX15AF71G) and the University of Rhode Island College of Engineering Dean’s Fellowship program for supporting this study. Dr. AKM Saiful Islam is supported by the European Union Seventh Framework Programme FP7/2007–2013 (Grant Number 603864) (HELIX: High-End cLimate Impacts and eXtremes; http://www.helixclimate.eu). We also like to thank the anonymous reviewers for their thoughtful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Shafqat Akanda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.A., Islam, A.K.M.S. & Akanda, A.S. Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data. Clim Dyn 51, 2169–2190 (2018). https://doi.org/10.1007/s00382-017-4006-1

Download citation

Keywords

  • Climatic extremes
  • Bias correction
  • Monsoon
  • RCM
  • RCP
  • CMIP5