Skip to main content

Advertisement

Log in

On the ability of RCMs to capture the circulation pattern of Etesians

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Etesians are among the most persistent regional scale wind systems in the lower troposphere that prevail over the eastern Mediterranean during the extended summer season. The performance of five high-resolution EURO-CORDEX regional climate models (RCMs) in simulating the Etesian climatology as well as the associated large-scale atmospheric circulation is investigated. The model outputs are validated against reanalysis datasets (ERA-Interim, 20CR-v2c and ERA20-C) and daily station observations covering the period May to September 1989–2004. Results show that most RCMs coherently reproduce the number of observed Etesian days, the duration of their episodes and the wind field over the Aegean Sea. The majority of RCMs better reproduce in situ wind speed than the driving model, especially over the central and southwestern Aegean Sea. All models represent very well the mean state of the large-scale atmospheric circulation associated with Etesians both at the surface and at mid to upper troposphere, compared to reanalyses. Statistically significant differences vary depending on the subperiod, generally with a better performance for September. The performance of the models improves significantly with decreasing pressure gradient over the Aegean. Finally, results highlight the ability of EURO-CORDEX RCMs in simulating the Etesians over the Aegean, especially the DMI, SMHI and IPSL, which makes them efficient tools for wind energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitivity study of regional climate model simulations to large- scale nudging parameters. Mon Weather Rev 137:1666–1686. doi: 10.1175/2008MWR2620.1

    Article  Google Scholar 

  • Anagnostopoulou C, Zanis P, Katragkou E, Tegoulias I, Tolika K (2014) Recent past and future, patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42:1819–1836. doi: 10.1007/s00382-013-1936-0

    Article  Google Scholar 

  • Ardhuin F, Bertotti L, Bidlot J-R, Cavaleri L, Filipetto V, Lefevre J-M, Wittmann P (2007) Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Eng 34:3–4, 526–541

    Article  Google Scholar 

  • Berg P, Döscher R, Koenigk T (2013) Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic. Geosci Model Dev Discuss 6:495–520. doi:10.5194/gmdd-6-495-2013

    Article  Google Scholar 

  • Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2016) Lagged effects of the Mistral wind on heavy precipitation through ocean-atmosphere coupling in the region of Valencia (Spain). Clim Dyn 1–15. doi 10.1007/s00382-016-3153-0

  • Bertotti L and Cavaleri L (2009) Wind and wave predictions in the Adriatic Sea. J Mar Syst 78:S227–S234. doi:10.1016/j.jmarsys.2009.01.018

    Article  Google Scholar 

  • Bloom A, Kotroni V, Lagouvardos K (2008) Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Nat Hazards Earth Syst Sci 8:1249–1257

    Article  Google Scholar 

  • Borhan Y (1998) Mesoscale interactions on wind energy potential in the northern Aegean region: a case study. Renew Sust Energy Rev 2:353–360

    Article  Google Scholar 

  • Cameron AC, Trivedi PK (1990) Regression-based Tests for overdispersion in the Poisson model. J Econom 46:347–364

    Article  Google Scholar 

  • Cameron AC, Trivedi PK (1998) Regression Analysis of count data. Cambridge University Press, New York

    Book  Google Scholar 

  • Cha DH, Jin CS, Lee DK, Kuo YH (2011) Impact of intermittent spectral nudging on regional climate simulation using weather research and forecasting model. J Geophys Res 116:D10103. doi:10.1029/2010JD015069

    Article  Google Scholar 

  • Chelton DB, Freilich M, Sienkiewicz J, Von Ahn J (2006) On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon Weather Rev 134, 2055–2071. Doi:10.1175/MWR3179.1

    Article  Google Scholar 

  • Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Giese B, Brohan P (2015) Intercomparison of an improved 20th century reanalysis version “2c” (1850–2012). American Meteorological Society Annual meeting, Phoenix, AZ, January 2015. Presentation

  • D’Andrea F, Tibaldi S, Blackburn M, Boer G, Deque M, Dix MR, Dugas B, Ferranti L, Iwasaki T, Kitoh A, Pope V, Randall D, Roeckner E, Straus D, Stern W, Van den Dool H, Williamson D (1998) Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim Dyn 14(6):385–407. doi:10.1007/s003820050230

    Article  Google Scholar 

  • Dafka S, Xoplaki E, Toreti A, Zanis P, Tyrlis E, Zerefos C, Luterbacher J (2016) The Etesians: from observations to reanalysis. Clim Dyn 47:1569–1585. doi:10.1007/s00382-015-2920-7

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim re-analysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Diaconescu EP, Laprise R (2013) Can added value be expected in RCM-simulated large. scales? Clim Dyn 41(7):1769–1800. doi:10.1007/s00382-012-1649-9

    Article  Google Scholar 

  • Feser F (2015) Climate sciences meet visual arts—the visiting artist researcher experiment. J Sci Commun 14(01):C02

    Article  Google Scholar 

  • Feser F, Barcikowska M (2012) The influence of spectral nudging on typhoon formation in regional climate models. Environ Res Lett 7 014024. doi:10.1088/1748-9326/7/1/014024

    Google Scholar 

  • Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data—a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi:10.1175/2011BAMS3061.1

    Article  Google Scholar 

  • Fyrippis Ι, Axaopoulos PJ, Panayiotou G (2010) Wind energy potential assessment in Naxos Island, Greece. Appl Energy 87:577–586

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2008) The influence of the Weibull assumption in monthly wind energy estimation. Wind Energy 11:483–502

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2009) A comparison of methodologies for monthly wind energy estimation. Wind Energy 12:640–659

    Article  Google Scholar 

  • Giorgi F et al (2001) Regional climate information - evaluation and projections. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 583–638

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Organ 58:175–183

    Google Scholar 

  • Hernández-Díaz L, Laprise R, Nikiéma O, Winger K (2016) 3-Step dynamical downscaling with empirical correction of sea-surface conditions: application to a CORDEX Africa simulation. Clim Dyn. doi:10.1007/s00382-016-3201-9

    Google Scholar 

  • Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011

    Article  Google Scholar 

  • Iizuka S, Dairaku K, Sasaki W, Adachi SA, Ishizaki NN, Kusaka H, Takayabu I (2012) Assessment of ocean surface winds and tropical cyclones around Japan by RCMs. J Meteorol Soc Jpn 90B:91–102. doi: 10.2151/jmsj.2012-B08

    Article  Google Scholar 

  • Jacob D et al (2014) Euro-CORDEX: New high-resolution climate change projections for European impact research. Regional Environ Change 14(2):563–578

    Article  Google Scholar 

  • Joliffe IT, Stephenson DB (2003) Forecast Verification: a practitioner’s guide in Atmospheric Science. Wiley, New York

    Google Scholar 

  • Jones RW, Renfrew A, Orr A, Webber BGM, Holland DM, Lazzara MA (2016) Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J Geophys Res Atmos 121:6240–6257

    Article  Google Scholar 

  • Kallos G, Kassomenos P, Pielke RA (1993) Synoptic and mesoscale weather conditions during air pollution episodes in Athens, Greece. Bound Layer Meteor 63:163–184

    Article  Google Scholar 

  • Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618

    Article  Google Scholar 

  • Kent EC, Fangohr S, Berry DI (2013) A comparative assessment of monthly mean wind speed products over the global ocean. Int J Clim 33(11):2520–2541. doi:10.1002/joc.3606

    Article  Google Scholar 

  • Koltzow MAO, Iversen T, Haugen JE (2011) The importance of lateral boundaries, surface forcing and choice of domain size for dynamical downscaling of global climate simulations. Atmosphere 2:67–95

    Article  Google Scholar 

  • Kostopoulos V, Helmis C (2014) Flux measurements in the surface marine atmospheric boundary layer over the Aegean Sea, Greece. Sci Total Env 494–495: 166–176. doi:10.1016/j.scitotenv.2014.06.127

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi: 10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Kunz M, Mohr S, Rauthe M, Lux R, Kottmeier C (2010) Assessment of extreme wind speeds from regional climate models-part 1: estimation of return values and their evaluation. Nat Hazards Earth Syst Sci 10:907–922. doi:10.5194/nhess-10-907-2010

    Article  Google Scholar 

  • Laprise R, Kornic D, Rapaic M, Separovic L, Leduc M, Nikiema O, Luca AD, Diaconescu E, Alexandru A, Lucas-Picher P, de Elia R, Caya D, Biner S (2012) Climate change, chapter considerations of domain size and large-scale driving for nested regional climate models: impact on internal variability and ability at developing small-scale details, p 244. Springer, Wien

    Google Scholar 

  • Lebassi-Habtezion B, Diffenbaugh NS (2013) Nonhydrostatic nested climate modeling: a case study of the 2010 summer season over the western United States. J Geophys Res Atmos 118, 10,944–10, 962

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36:1–25. doi:10.1016/j.ocemod.2010.10.008

    Article  Google Scholar 

  • Lucas-Picher P, Caya D, de Elia R, Laprise R (2008b) Investigation of regional climate models’ internal variability with a ten-member ensemble of 10- year simulations over a large domain. Clim Dyn 31(7–8):927–940. doi: 10.1007/s00382-008-0384-8

    Article  Google Scholar 

  • Lucas-Picher P, Laprise R, Winger K (2017) Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Clim Dyn 2611:2633. doi 10.1007/s00382-016-3227-z

    Google Scholar 

  • Menut L, Tripathi OP, Colette A, Vautard R, Flaounas E, Bessagnet B (2013) Evaluation of regional climate simulations for air quality modeling purposes. Clim Dyn. doi:10.1007/s00382-012-1345-9

    Google Scholar 

  • Metaxas DA, Bartzokas A (1994) Pressure covariability over the Atlantic, Europe and N. Africa. Application: centers of action for temperature, winter precipitation and summer winds in Athens, Greece. Theor Appl Climatol 49:9–18

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Sevault F, Chiacchio M, Wild M (2015) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a regional climate system model. Clim Dyn. doi:10.1007/s00382-014-2205-6

    Google Scholar 

  • Nikulin G, Kjellstrom E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55

    Article  Google Scholar 

  • Nolan P, Lynch P, McGrath R, Semmler T, Wang S (2011) Simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy 15:593–608

    Article  Google Scholar 

  • Obermann A, Bastin S, Belamari S, Conte D, Gaertner MA, Li L, Ahrens B (2016) Mistral and tramontane wind speed and wind direction patterns in regional climate simulations. Clim Dyn 1–18. doi:10.1007/s00382-016-3053-3

  • Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470. doi:10.1007/s00382-012-1615-6

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: what should we nudge? Clim Dyn 44:1627–1644. doi: 10.1007/s00382-014-2453-5

    Article  Google Scholar 

  • Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Climate 25:7046–7066. doi:10.1175/JCLI-D-12-00048.1

    Article  Google Scholar 

  • Pezzoli A (2005) Observation and analysis of etesian wind storms in the Saroniko Gulf. Ad Geo 2:187–194. doi:10.5194/adgeo-2-187-2005

    Article  Google Scholar 

  • Pielke RA, Wilby R, Niyogi D, Hossain F, Dairuku K, Adegoke J, Kallos G, Seastedt T, Suding K (2012) Dealing with complexity and extreme events using a bottom-up, resource-based vulnerability perspective, in extreme events and natural hazards: the complexity perspective. American Geophysical Union, Washington D.C. doi:10.1029/2011GM001086

    Google Scholar 

  • Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Report Series no. 14, ECMWF, pp. 59

  • Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?. Clim Dyn. doi:10.1007/s00382-015-2589-y

    Google Scholar 

  • Pryor SC and Barthelmie RJ (2011) Assessing climate change impacts on the near-term stability of the wind energy resource over the USA. Proc Natl Acad Sci USA. 108:8167–8171. doi:10.1073/pnas.1019388108

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP et al. (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Change 81:267–280

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.8

    Article  Google Scholar 

  • Rummukainen M, Rockel B, Bärring L, Christensen JH, Reckermann M (2015) Twenty-first-century challenges in regional climate modeling. Bull Amer Meteor Soc 96:ES135-ES138

    Article  Google Scholar 

  • Salvação N, Bernardino M, Guedes Soares C (2014) Assessing mesoscale wind simulations in different environments. Comput Geosci 71:28–36

    Article  Google Scholar 

  • Schwierz C, Heck P, Zenklusen E, Bresch DN, Vidale P-L, Wild M, Schär C (2009) Modelling European winter wind storm losses in current and future climate. Clim Change 101:485–514. DOI 10.1007/s10584-009-9712-1

    Article  Google Scholar 

  • Sieck K, Jacob D (2016) Influence of the boundary forcing on the internal variability of a regional climate model. Am J Clim Change 5:373–382. doi:10.4236/ajcc.2016.53028

    Article  Google Scholar 

  • Sikiric DM, Janekovic I, Tomazic I, Kuzmic M, Roland A (2015) Comparison of ALADIN and IFS model wind speeds over the Adriatic. Acta Adriat 1(0001–5113):56 67–82

    Google Scholar 

  • Sotillo M, Ratsimandresy A, Carretero J, Bentamy A, Valero F, Gonzalez-Rouco F (2005) A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim Dyn 25:219–236

    Article  Google Scholar 

  • Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E et al. (2014) CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Reports Meteorology and Climatology 116. SMHI, SE-60176 Norrköping, Sverige

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ and. Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tölle MH, Gutjahr O, Busch G, Thiele JC (2014) Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study. J Geophys Res Atmos 119:2711–2724

    Article  Google Scholar 

  • Tyrlis E, Lelieveld J (2013) Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean. J Atmos Sci 70:3374–3396. doi:10.1175/JAS-D-13-035.1

    Article  Google Scholar 

  • Tyrlis E, Tymvios FS, Giannakopoulos C and Lelieveld J (2015) The role of blocking in the summer 2014 collapse of Etesians over the eastern Mediterranean. J Geophys Res Atmos 120. doi:10.1002/2015JD023543

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Weisse R, Feser F (2003) Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coastal Eng 48:211–225

    Article  Google Scholar 

  • Weisse R, von Storch H, Feser F (2005) Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J Clim 18:465–479

    Article  Google Scholar 

  • Wilks SS (1962) Mathematical Statistics. Wiley, New York

    Google Scholar 

  • Winterfeldt J, Weisse R (2009) Assessment of value added for surface marine wind speed obtained from two regional climate models (RCMs). Mon Weather Rev 137(9):2955–2965. doi: 10.1175/2009MWR2704.1

    Article  Google Scholar 

  • Woollings T, Hoskins B, Blackburn M, Hassell D, Hodges K (2010a) Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim Dyn 35:341–353

    Article  Google Scholar 

  • Zerefos C (1978) Surface wind energy density over eastern Greece. Arch Met Geoph Biokl Ser B 26:81–86

    Article  Google Scholar 

  • Zhang C, Wang Y, Lauer A, Hamilton K (2012) Configuration and evaluation of the WRF model for the Study of Hawaiian Regional Climate. Mon Weather Rev. doi:10.1175/MWR-D-11-00260.1

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Michel Deque and Dr. Clotilde Dubois (CNRM), Dr. Grigory Nikulin (SMHI), Dr. Fredrik Boberg (DMI) as well as Dr. Robert Vautard and Dr. Isabelle Tobin (IPSL) for providing the ALADIN v5.3, ARPEGE-v5.2, RCA-v4, HIRHAM371 and WRF3.3.1 simulations respectively. We are grateful to the anonymous reviewers for their valuable comments and suggestions, which improved the manuscript. The research leading to these results has received funding from the Greek State Scholarships Foundation and the DFG (German Science Foundation) project “The Etesian wind system and energy potential over the Aegean Sea; past, present, future”. We are indebted to the Hellenic National Meteorological Service for the observational dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Dafka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dafka, S., Toreti, A., Luterbacher, J. et al. On the ability of RCMs to capture the circulation pattern of Etesians. Clim Dyn 51, 1687–1706 (2018). https://doi.org/10.1007/s00382-017-3977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3977-2

Keywords

Navigation