Abstract
The Etesians are among the most persistent regional scale wind systems in the lower troposphere that prevail over the eastern Mediterranean during the extended summer season. The performance of five high-resolution EURO-CORDEX regional climate models (RCMs) in simulating the Etesian climatology as well as the associated large-scale atmospheric circulation is investigated. The model outputs are validated against reanalysis datasets (ERA-Interim, 20CR-v2c and ERA20-C) and daily station observations covering the period May to September 1989–2004. Results show that most RCMs coherently reproduce the number of observed Etesian days, the duration of their episodes and the wind field over the Aegean Sea. The majority of RCMs better reproduce in situ wind speed than the driving model, especially over the central and southwestern Aegean Sea. All models represent very well the mean state of the large-scale atmospheric circulation associated with Etesians both at the surface and at mid to upper troposphere, compared to reanalyses. Statistically significant differences vary depending on the subperiod, generally with a better performance for September. The performance of the models improves significantly with decreasing pressure gradient over the Aegean. Finally, results highlight the ability of EURO-CORDEX RCMs in simulating the Etesians over the Aegean, especially the DMI, SMHI and IPSL, which makes them efficient tools for wind energy applications.
Similar content being viewed by others
References
Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitivity study of regional climate model simulations to large- scale nudging parameters. Mon Weather Rev 137:1666–1686. doi: 10.1175/2008MWR2620.1
Anagnostopoulou C, Zanis P, Katragkou E, Tegoulias I, Tolika K (2014) Recent past and future, patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42:1819–1836. doi: 10.1007/s00382-013-1936-0
Ardhuin F, Bertotti L, Bidlot J-R, Cavaleri L, Filipetto V, Lefevre J-M, Wittmann P (2007) Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Eng 34:3–4, 526–541
Berg P, Döscher R, Koenigk T (2013) Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic. Geosci Model Dev Discuss 6:495–520. doi:10.5194/gmdd-6-495-2013
Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2016) Lagged effects of the Mistral wind on heavy precipitation through ocean-atmosphere coupling in the region of Valencia (Spain). Clim Dyn 1–15. doi 10.1007/s00382-016-3153-0
Bertotti L and Cavaleri L (2009) Wind and wave predictions in the Adriatic Sea. J Mar Syst 78:S227–S234. doi:10.1016/j.jmarsys.2009.01.018
Bloom A, Kotroni V, Lagouvardos K (2008) Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Nat Hazards Earth Syst Sci 8:1249–1257
Borhan Y (1998) Mesoscale interactions on wind energy potential in the northern Aegean region: a case study. Renew Sust Energy Rev 2:353–360
Cameron AC, Trivedi PK (1990) Regression-based Tests for overdispersion in the Poisson model. J Econom 46:347–364
Cameron AC, Trivedi PK (1998) Regression Analysis of count data. Cambridge University Press, New York
Cha DH, Jin CS, Lee DK, Kuo YH (2011) Impact of intermittent spectral nudging on regional climate simulation using weather research and forecasting model. J Geophys Res 116:D10103. doi:10.1029/2010JD015069
Chelton DB, Freilich M, Sienkiewicz J, Von Ahn J (2006) On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon Weather Rev 134, 2055–2071. Doi:10.1175/MWR3179.1
Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28
Compo GP, Whitaker JS, Sardeshmukh PD, Giese B, Brohan P (2015) Intercomparison of an improved 20th century reanalysis version “2c” (1850–2012). American Meteorological Society Annual meeting, Phoenix, AZ, January 2015. Presentation
D’Andrea F, Tibaldi S, Blackburn M, Boer G, Deque M, Dix MR, Dugas B, Ferranti L, Iwasaki T, Kitoh A, Pope V, Randall D, Roeckner E, Straus D, Stern W, Van den Dool H, Williamson D (1998) Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim Dyn 14(6):385–407. doi:10.1007/s003820050230
Dafka S, Xoplaki E, Toreti A, Zanis P, Tyrlis E, Zerefos C, Luterbacher J (2016) The Etesians: from observations to reanalysis. Clim Dyn 47:1569–1585. doi:10.1007/s00382-015-2920-7
Dee DP et al (2011) The ERA-Interim re-analysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597
Diaconescu EP, Laprise R (2013) Can added value be expected in RCM-simulated large. scales? Clim Dyn 41(7):1769–1800. doi:10.1007/s00382-012-1649-9
Feser F (2015) Climate sciences meet visual arts—the visiting artist researcher experiment. J Sci Commun 14(01):C02
Feser F, Barcikowska M (2012) The influence of spectral nudging on typhoon formation in regional climate models. Environ Res Lett 7 014024. doi:10.1088/1748-9326/7/1/014024
Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data—a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi:10.1175/2011BAMS3061.1
Fyrippis Ι, Axaopoulos PJ, Panayiotou G (2010) Wind energy potential assessment in Naxos Island, Greece. Appl Energy 87:577–586
García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2008) The influence of the Weibull assumption in monthly wind energy estimation. Wind Energy 11:483–502
García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2009) A comparison of methodologies for monthly wind energy estimation. Wind Energy 12:640–659
Giorgi F et al (2001) Regional climate information - evaluation and projections. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 583–638
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Organ 58:175–183
Hernández-Díaz L, Laprise R, Nikiéma O, Winger K (2016) 3-Step dynamical downscaling with empirical correction of sea-surface conditions: application to a CORDEX Africa simulation. Clim Dyn. doi:10.1007/s00382-016-3201-9
Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011
Iizuka S, Dairaku K, Sasaki W, Adachi SA, Ishizaki NN, Kusaka H, Takayabu I (2012) Assessment of ocean surface winds and tropical cyclones around Japan by RCMs. J Meteorol Soc Jpn 90B:91–102. doi: 10.2151/jmsj.2012-B08
Jacob D et al (2014) Euro-CORDEX: New high-resolution climate change projections for European impact research. Regional Environ Change 14(2):563–578
Joliffe IT, Stephenson DB (2003) Forecast Verification: a practitioner’s guide in Atmospheric Science. Wiley, New York
Jones RW, Renfrew A, Orr A, Webber BGM, Holland DM, Lazzara MA (2016) Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J Geophys Res Atmos 121:6240–6257
Kallos G, Kassomenos P, Pielke RA (1993) Synoptic and mesoscale weather conditions during air pollution episodes in Athens, Greece. Bound Layer Meteor 63:163–184
Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618
Kent EC, Fangohr S, Berry DI (2013) A comparative assessment of monthly mean wind speed products over the global ocean. Int J Clim 33(11):2520–2541. doi:10.1002/joc.3606
Koltzow MAO, Iversen T, Haugen JE (2011) The importance of lateral boundaries, surface forcing and choice of domain size for dynamical downscaling of global climate simulations. Atmosphere 2:67–95
Kostopoulos V, Helmis C (2014) Flux measurements in the surface marine atmospheric boundary layer over the Aegean Sea, Greece. Sci Total Env 494–495: 166–176. doi:10.1016/j.scitotenv.2014.06.127
Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi: 10.5194/gmd-7-1297-2014
Kunz M, Mohr S, Rauthe M, Lux R, Kottmeier C (2010) Assessment of extreme wind speeds from regional climate models-part 1: estimation of return values and their evaluation. Nat Hazards Earth Syst Sci 10:907–922. doi:10.5194/nhess-10-907-2010
Laprise R, Kornic D, Rapaic M, Separovic L, Leduc M, Nikiema O, Luca AD, Diaconescu E, Alexandru A, Lucas-Picher P, de Elia R, Caya D, Biner S (2012) Climate change, chapter considerations of domain size and large-scale driving for nested regional climate models: impact on internal variability and ability at developing small-scale details, p 244. Springer, Wien
Lebassi-Habtezion B, Diffenbaugh NS (2013) Nonhydrostatic nested climate modeling: a case study of the 2010 summer season over the western United States. J Geophys Res Atmos 118, 10,944–10, 962
Lebeaupin-Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36:1–25. doi:10.1016/j.ocemod.2010.10.008
Lucas-Picher P, Caya D, de Elia R, Laprise R (2008b) Investigation of regional climate models’ internal variability with a ten-member ensemble of 10- year simulations over a large domain. Clim Dyn 31(7–8):927–940. doi: 10.1007/s00382-008-0384-8
Lucas-Picher P, Laprise R, Winger K (2017) Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Clim Dyn 2611:2633. doi 10.1007/s00382-016-3227-z
Menut L, Tripathi OP, Colette A, Vautard R, Flaounas E, Bessagnet B (2013) Evaluation of regional climate simulations for air quality modeling purposes. Clim Dyn. doi:10.1007/s00382-012-1345-9
Metaxas DA, Bartzokas A (1994) Pressure covariability over the Atlantic, Europe and N. Africa. Application: centers of action for temperature, winter precipitation and summer winds in Athens, Greece. Theor Appl Climatol 49:9–18
Nabat P, Somot S, Mallet M, Sevault F, Chiacchio M, Wild M (2015) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a regional climate system model. Clim Dyn. doi:10.1007/s00382-014-2205-6
Nikulin G, Kjellstrom E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55
Nolan P, Lynch P, McGrath R, Semmler T, Wang S (2011) Simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy 15:593–608
Obermann A, Bastin S, Belamari S, Conte D, Gaertner MA, Li L, Ahrens B (2016) Mistral and tramontane wind speed and wind direction patterns in regional climate simulations. Clim Dyn 1–18. doi:10.1007/s00382-016-3053-3
Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470. doi:10.1007/s00382-012-1615-6
Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: what should we nudge? Clim Dyn 44:1627–1644. doi: 10.1007/s00382-014-2453-5
Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Climate 25:7046–7066. doi:10.1175/JCLI-D-12-00048.1
Pezzoli A (2005) Observation and analysis of etesian wind storms in the Saroniko Gulf. Ad Geo 2:187–194. doi:10.5194/adgeo-2-187-2005
Pielke RA, Wilby R, Niyogi D, Hossain F, Dairuku K, Adegoke J, Kallos G, Seastedt T, Suding K (2012) Dealing with complexity and extreme events using a bottom-up, resource-based vulnerability perspective, in extreme events and natural hazards: the complexity perspective. American Geophysical Union, Washington D.C. doi:10.1029/2011GM001086
Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Report Series no. 14, ECMWF, pp. 59
Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?. Clim Dyn. doi:10.1007/s00382-015-2589-y
Pryor SC and Barthelmie RJ (2011) Assessing climate change impacts on the near-term stability of the wind energy resource over the USA. Proc Natl Acad Sci USA. 108:8167–8171. doi:10.1073/pnas.1019388108
Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP et al. (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31
Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Change 81:267–280
Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.8
Rummukainen M, Rockel B, Bärring L, Christensen JH, Reckermann M (2015) Twenty-first-century challenges in regional climate modeling. Bull Amer Meteor Soc 96:ES135-ES138
Salvação N, Bernardino M, Guedes Soares C (2014) Assessing mesoscale wind simulations in different environments. Comput Geosci 71:28–36
Schwierz C, Heck P, Zenklusen E, Bresch DN, Vidale P-L, Wild M, Schär C (2009) Modelling European winter wind storm losses in current and future climate. Clim Change 101:485–514. DOI 10.1007/s10584-009-9712-1
Sieck K, Jacob D (2016) Influence of the boundary forcing on the internal variability of a regional climate model. Am J Clim Change 5:373–382. doi:10.4236/ajcc.2016.53028
Sikiric DM, Janekovic I, Tomazic I, Kuzmic M, Roland A (2015) Comparison of ALADIN and IFS model wind speeds over the Adriatic. Acta Adriat 1(0001–5113):56 67–82
Sotillo M, Ratsimandresy A, Carretero J, Bentamy A, Valero F, Gonzalez-Rouco F (2005) A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim Dyn 25:219–236
Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E et al. (2014) CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Reports Meteorology and Climatology 116. SMHI, SE-60176 Norrköping, Sverige
Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192
Taylor KE, Stouffer RJ and. Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498
Tölle MH, Gutjahr O, Busch G, Thiele JC (2014) Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study. J Geophys Res Atmos 119:2711–2724
Tyrlis E, Lelieveld J (2013) Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean. J Atmos Sci 70:3374–3396. doi:10.1175/JAS-D-13-035.1
Tyrlis E, Tymvios FS, Giannakopoulos C and Lelieveld J (2015) The role of blocking in the summer 2014 collapse of Etesians over the eastern Mediterranean. J Geophys Res Atmos 120. doi:10.1002/2015JD023543
Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121. doi:10.1007/s00382-011-1259-y
Weisse R, Feser F (2003) Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coastal Eng 48:211–225
Weisse R, von Storch H, Feser F (2005) Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J Clim 18:465–479
Wilks SS (1962) Mathematical Statistics. Wiley, New York
Winterfeldt J, Weisse R (2009) Assessment of value added for surface marine wind speed obtained from two regional climate models (RCMs). Mon Weather Rev 137(9):2955–2965. doi: 10.1175/2009MWR2704.1
Woollings T, Hoskins B, Blackburn M, Hassell D, Hodges K (2010a) Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim Dyn 35:341–353
Zerefos C (1978) Surface wind energy density over eastern Greece. Arch Met Geoph Biokl Ser B 26:81–86
Zhang C, Wang Y, Lauer A, Hamilton K (2012) Configuration and evaluation of the WRF model for the Study of Hawaiian Regional Climate. Mon Weather Rev. doi:10.1175/MWR-D-11-00260.1
Acknowledgements
The authors wish to thank Dr. Michel Deque and Dr. Clotilde Dubois (CNRM), Dr. Grigory Nikulin (SMHI), Dr. Fredrik Boberg (DMI) as well as Dr. Robert Vautard and Dr. Isabelle Tobin (IPSL) for providing the ALADIN v5.3, ARPEGE-v5.2, RCA-v4, HIRHAM371 and WRF3.3.1 simulations respectively. We are grateful to the anonymous reviewers for their valuable comments and suggestions, which improved the manuscript. The research leading to these results has received funding from the Greek State Scholarships Foundation and the DFG (German Science Foundation) project “The Etesian wind system and energy potential over the Aegean Sea; past, present, future”. We are indebted to the Hellenic National Meteorological Service for the observational dataset.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dafka, S., Toreti, A., Luterbacher, J. et al. On the ability of RCMs to capture the circulation pattern of Etesians. Clim Dyn 51, 1687–1706 (2018). https://doi.org/10.1007/s00382-017-3977-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-017-3977-2