Climate Dynamics

, Volume 51, Issue 5–6, pp 1671–1686 | Cite as

The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model

  • Bo Liu
  • Gang Huang
  • Kaiming Hu
  • Renguang Wu
  • Hainan Gong
  • Pengfei Wang
  • Guijie Zhao


This study investigates the multidecadal variations of the interannual relationship between the East Asian summer monsoon (EASM) and El Niño-Southern Oscillation (ENSO) in 1000-year simulation of a coupled climate model. The interannual relationship between ENSO and EASM has experienced pronounced changes throughout the 1000-year simulation. During the periods with significant ENSO-EASM relationship, the ENSO-related circulation anomalies show a Pacific-Japan (PJ)-like pattern with significant wave-activity flux propagating from the tropics to the north in lower troposphere and from the mid-latitudes to the south in upper troposphere. The resultant ENSO-related precipitation anomalies are more (less) than normal over the East Asia (western North Pacific) in the decaying summers of El Niño events. In contrast, the circulation and precipitation anomalies are weak over East Asia-western North Pacific during the periods with weak ENSO-EASM relationship. Based on the energy conversion analysis, the related anomalies achieve barotropic and baroclinic energy from the mean flow during the periods with strong ENSO-EASM relationship. On the contrary, during the low-correlation periods, the energy conversion is too weak to form the link between the tropics and mid-latitudes. The main reason for the multidecadal variations of ENSO-EASM relationship is the amplitude discrepancy of SST anomalies over the Indo-western Pacific Ocean which, in turn, leads to the intensity difference of the western North Pacific anomalous anticyclone (WPAC) and related climate anomalies.


East Asian Summer monsoon ENSO Coupled climate model Interannual Multidecadal variations 



This work was supported by the National Natural Science Foundation of China (41425019, 41721004, 41661144016 and 41376112) and the Public Science and Technology Research Funds Projects of Ocean (201505013) and the CAS Key Technology Talent Program.


  1. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2013) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  2. Chen LX, Dong M, Shao YN (1992) The Characteristics of interannual variations on the East-Asian monsoon. J Meteorol Soc Jpn 70:397–421CrossRefGoogle Scholar
  3. Compo GP et al (2011) The twentieth century reanalysis project. Q J Roy Meteor Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  4. Du Y, Xie SP, Huang G, Hu KM (2009) Role of air–sea interaction in the long persistence of El Nino-induced North Indian ocean warming. J Clim 22:2023–2038. doi: 10.1175/2008JCLI2590.1 CrossRefGoogle Scholar
  5. Gill AE (1980) Some Simple solutions for heat-induced tropical circulation. Q J Roy Meteor Soc 106:447–462. doi: 10.1256/Smsqj.44904 CrossRefGoogle Scholar
  6. Gong H, Wang L, Chen W, Nath D, Huang G, Tao W (2015) Diverse influences of ENSO on the East Asian–Western Pacific winter climate tied to different ENSO properties in CMIP5 models. J Clim 28:2187–2202. doi: 10.1175/jcli-d-14-00405.1 CrossRefGoogle Scholar
  7. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys Italy 46:1–26Google Scholar
  8. He Z, Wu R (2013) Seasonality of interannual atmosphere-ocean interaction in the South China Sea. J Oceanography 69(6):699–712. doi: 10.1007/s10872-013-0201-9 CrossRefGoogle Scholar
  9. Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612. doi: 10.1175/1520-0469(1983)040<1595:Tspamf>2.0.Co;2 CrossRefGoogle Scholar
  10. Hu K, Huang G, Zheng X-T, Xie S-P, Qu X, Du Y, Liu L (2014) Interdecadal variations in ENSO influences on Northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J Clim 27:5982–5998. doi: 10.1175/jcli-d-13-00268.1 CrossRefGoogle Scholar
  11. Huang G, Yan ZW (1999) The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin Sci Bull 44:1325–1329. doi: 10.1007/Bf02885855 CrossRefGoogle Scholar
  12. Huang G, Hu K, Xie S-P (2010) Strengthening of tropical Indian Ocean teleconnection to the Northwest pacific since the Mid-1970s: an atmospheric GCM study. J Clim 23:5294–5304. doi: 10.1175/2010jcli3577.1 CrossRefGoogle Scholar
  13. Huang P, Wang P, Hu K, Huang G, Zhang Z, Liu Y, Yan B (2014) An Introduction to the integrated climate model of the center for monsoon system research and its simulated influence of El Niño on East Asian-western North Pacific CLIMATE. Adv Atmos Sci 31:1136–1146. doi: 10.1007/s00376-014-3233-1 CrossRefGoogle Scholar
  14. Jiang W, Huang G, Hu K, Wu R, Gong H, Chen X, Tao W (2017) Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: dependence on the ENSO decay pace. J Clim 30:109–127. doi: 10.1175/jcli-d-16-0365.1 CrossRefGoogle Scholar
  15. Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett. doi: 10.1029/2012gl052006 Google Scholar
  16. Kosaka Y, Nakamura H (2006) Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Q J Roy Meteor Soc 132:2009–2030. doi: 10.1256/qj.05.204 CrossRefGoogle Scholar
  17. Liu B, Huang G, Wang PF, Yan BL, Zhao GJ (2017) The dependence on atmospheric resolution of ENSO and related East Asian-Western North Pacific Summer climate variability in a coupled model. Theor Appl Climatol. doi: 10.1007/s00704-017-2254-y Google Scholar
  18. Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360. doi: 10.1175/Jcli3404.1 CrossRefGoogle Scholar
  19. Madec G (2008) NEMO ocean engine. Note du Pole de modelisation 27. Institut Pierre-Simon Laplace, pp 193Google Scholar
  20. Matsuno T (1996) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43CrossRefGoogle Scholar
  21. Nitta T (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J Meteor Soc Japan 65:373–390CrossRefGoogle Scholar
  22. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the Kiel climate model. J Clim 22:71–92. doi: 10.1175/2008jcli2261.1 CrossRefGoogle Scholar
  23. Roeckner E, Coauthos (2003) The atmospheric general circulation model ECHAM5. PART I: model description. Report 349, Max Planck Institute for Meteorology, p 140Google Scholar
  24. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi: 10.1175/Jcli3824.1 CrossRefGoogle Scholar
  25. Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave-propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392. doi: 10.1175/1520-0469(1983)040<1363:Bwpaia>2.0.Co;2 CrossRefGoogle Scholar
  26. Song FF, Zhou TJ (2014) Interannual variability of East Asian Summer monsoon Simulated by CMIP3 and CMIP5 AGCMs: skill dependence on indian ocean-Western Pacific anticyclone teleconnection. J Clim 27:1679–1697. doi: 10.1175/Jcli-D-13-00248.1 CrossRefGoogle Scholar
  27. Song FF, Zhou T (2015) The Crucial role of internal variability in modulating the decadal variation of the East Asian Summer Monsoon–ENSO Relationship during the twentieth century. J Clim 28:7093–7107. doi: 10.1175/jcli-d-14-00783.1 CrossRefGoogle Scholar
  28. Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627. doi: 10.1175/1520-0469(2001)058<0608:Afoapi>2.0.Co;2 CrossRefGoogle Scholar
  29. Tao W, Huang G, Hu K, Gong H, Wen G, Liu L (2015) A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Clim Dyn 46:205–226. doi: 10.1007/s00382-015-2579-0 CrossRefGoogle Scholar
  30. Valcke S (2006) OASIS3 user guide. PRISM Tech Rep 3:64Google Scholar
  31. Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. doi: 10.1175/1520-0442(2000)013<1517:Peathd>2.0.Co;2 CrossRefGoogle Scholar
  32. Wang B, Wu RG, Li T (2003) Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim 16:1195–1211. doi: 10.1175/1520-0442(2003)16<1195:Aoiaii>2.0.Co;2 CrossRefGoogle Scholar
  33. Wang B, Wu Z, Li J, Liu J, Chang C-P, Ding Y, Wu G (2008a) How to measure the strength of the East Asian summer monsoon. J Clim 21:4449–4463. doi: 10.1175/2008jcli2183.1 CrossRefGoogle Scholar
  34. Wang B, Yang J, Zhou T, Wang B (2008b) Interdecadal changes in the major modes of Asian–Australian Monsoon variability: strengthening relationship with ENSO since the Late 1970s. J Clim 21:1771–1789. doi: 10.1175/2007jcli1981.1 CrossRefGoogle Scholar
  35. Wu R, Kirtman BP (2003) On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Q J Roy Meteor Soc 129:3439–3468. doi: 10.1256/qj.02.214 CrossRefGoogle Scholar
  36. Wu R, Wang B (2002) A contrast of the east Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93. J Clim 15:3266–3279. doi: 10.1175/1520-0442(2002)015<3266:Acotea>2.0.Co;2 CrossRefGoogle Scholar
  37. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res Atmos. doi: 10.1029/2007jd009316 Google Scholar
  38. Wu B, Zhou TJ, Li T (2009) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005. doi: 10.1175/2008JCLI2710.1 CrossRefGoogle Scholar
  39. Wu R, Huang G, Du Z, Hu K (2014) Cross-season relation of the South China Sea precipitation variability between winter and summer. Clim Dyn 43(1–2):193–207. doi: 10.1007/s00382-013-1820-y CrossRefGoogle Scholar
  40. Xie X, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the itcz in the eastern pacifc. Tellus A Dyn Meteorol Oceanogr 46:340–350. doi: 10.1034/j.1600-0870.1994.t01-1-00001.x CrossRefGoogle Scholar
  41. Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J Clim 22:730–747. doi: 10.1175/2008JCLI2544.1 CrossRefGoogle Scholar
  42. Xie SP, Du Y, Huang G, Zheng X-T, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Niño Influences on Indo–Western Pacific and East Asian climate in the 1970s. J Clim 23:3352–3368. doi: 10.1175/2010jcli3429.1 CrossRefGoogle Scholar
  43. Xie SP, Kosaka Y, Du Y, Hu KM, Chowdary J, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. doi: 10.1007/s00376-015-5192-6 CrossRefGoogle Scholar
  44. Yang JL, Liu QY, Xie SP, Liu ZY, Wu LX (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi: 10.1029/2006gl028571 Google Scholar
  45. Zhang RH, Sumi A, Kimoto M (1996) Impact of El Nino on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J Meteorol Soc Jpn 74:49–62CrossRefGoogle Scholar
  46. Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Nino on the precipitation in China. Adv Atmos Sci 16:229–241. doi: 10.1007/Bf02973084 CrossRefGoogle Scholar
  47. Zhang RH, Min Q, Su J (2017) Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: role of the anomalous western North Pacific anticyclone. Sci China Earth Sci 60:1124–1132. doi: 10.1007/s11430-016-9026-x CrossRefGoogle Scholar
  48. Zhao G, Huang G, Wu R, Tao W, Gong H, Qu X, Hu K (2015) A new upper-level circulation index for the East Asian summer monsoon variability. J Clim 28:9977–9996. doi: 10.1175/jcli-d-15-0272.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bo Liu
    • 1
    • 4
  • Gang Huang
    • 1
    • 3
    • 4
    • 5
  • Kaiming Hu
    • 1
    • 2
  • Renguang Wu
    • 2
  • Hainan Gong
    • 2
  • Pengfei Wang
    • 1
    • 2
  • Guijie Zhao
    • 1
    • 2
    • 6
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of ScienceBeijingChina
  2. 2.Center for Monsoon System ResearchInstitute of Atmospheric Physics, Chinese Academy of ScienceBeijingChina
  3. 3.Joint Center for Global Change StudiesBeijingChina
  4. 4.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  6. 6.Beijing Meteorological ObservatoryBeijingChina

Personalised recommendations