Climate Dynamics

, Volume 51, Issue 4, pp 1311–1332 | Cite as

Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: insights from partially decoupled numerical experiment

  • Julien Crétat
  • Pascal Terray
  • Sébastien Masson
  • K. P. Sooraj


The intrinsic precursors and timescale of the tropical Indian Ocean Dipole (IOD) are examined with the help of a partially coupled global experiment with decoupled SST over the tropical Pacific. The IOD does exist in the absence of sea surface temperature interannual variability in the tropical Pacific in our modeling framework, but has weaker amplitude and damped Bjerknes feedback. However, IOD variability is much more biennial in the absence than presence of El Niño Southern Oscillation, especially in the eastern equatorial Indian Ocean (IO). Such biennial rhythm results mainly from two mechanisms internal to the IO. The tropical ocean dynamics play a key role in the biennial anomalies during boreal winter with a sudden reversal of thermocline anomalies in the eastern equatorial IO forced by intraseasonal disturbances reminiscent of the Madden–Julian Oscillation (MJO). However, this preconditioning is not sufficient for triggering IOD events in the next boreal spring per se. The main trigger for pure IODs relates to tropical–extratropical interactions within the IO. Convection and diabating heating associated with negative IODs promote a Gill-type tropical response, excite mid-latitude wave-trains and subtropical blocking in the Southern Hemisphere that trigger positive subtropical IOD events during boreal winter. The latter promotes cold SST and anticyclonic circulation anomalies over the southeast IO that persist and migrate northeastward, triggering positive IOD events during the next boreal spring. Accounting for the complementary influence of tropical ocean dynamics coupled to MJO and tropical-extratropical ocean–atmosphere interactions may thus help improving IOD predictability.


Biennial variability Coupled climate model Indian Ocean Dipole MJO Ocean dynamics Tropical–extratropical interactions 



This work was funded by the Earth System Science Organization, Ministry of Earth Sciences, Government of India under Monsoon Mission (Project No. MM/SERP/CNRS/2013/INT-10/002 Contribution #MM/PASCAL/RP/07. This work was performed using HPC resources from GENCI-IDRIS (Grants 2015, 2016, 2017—016895). We thank the three anonymous reviewers for their constructive comments.


  1. Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330Google Scholar
  2. Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean dipole. J Meteor Soc Japan 81:41–56Google Scholar
  3. Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere-ocean system: influences of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712Google Scholar
  4. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330Google Scholar
  5. Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26:3001–3004Google Scholar
  6. Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: a CGCM study. J Clim 18:4514–4530Google Scholar
  7. Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1608–1705Google Scholar
  8. Black E, Slingo J, Sperber KR (2003) An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon Wea Rev 131:74–94Google Scholar
  9. Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1–7Google Scholar
  10. Bracco A, Kucharski F, Molteni F (2005) Internal and forced modes of variability in the Indian Ocean. Geophys Res Lett 32:L12707. doi: 10.1029/2005GL023154 Google Scholar
  11. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560Google Scholar
  12. Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys Res Lett 40:1200–1205. doi: 10.1002/grl.50208 Google Scholar
  13. Cai W, Sullivan A, Cowan T (2009) Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys Res Lett 36:L23704. doi: 10.1029/2009GL040163 Google Scholar
  14. Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate 24:3910–3923Google Scholar
  15. Chan SC, SK Behera, T Yamagata (2008) Indian Ocean Dipole influence on South American rainfall. Geophys Res Lett 35:L14S12. doi: 10.1029/2008GL034204
  16. Compo GP, Sardeshmukh P (2010) Removing ENSO-related variations from the climate records. J Clim 23:1957–1978Google Scholar
  17. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28Google Scholar
  18. Crétat J, Terray P, Masson S, Sooraj KP, Roxy MK (2016) Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations. Clim Dyn, online. doi: 10.1007/s00382-016-3387-x Google Scholar
  19. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597Google Scholar
  20. Delman AS, Sprintall J, McClean JL, Talley LD (2016) Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. J Geophys Res Oc. doi: 10.1002/2016JC011635 Google Scholar
  21. Doi T, Behera SK, Yamagata T (2016) Improved seasonal prediction using the SINTEX-F2 coupled model. J Adv Mod Earth Syst 8:1847–1867Google Scholar
  22. Drbohlav HKL, Gualdi S, Navarra A (2007) A diagnostic study of the Indian Ocean dipole mode in El Niño and non-El Niño years. J Clim 20:2961–2977Google Scholar
  23. Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep-Sea Res II 50:2263–2284Google Scholar
  24. Fischer AS, Terray P, Delecluse P, Gualdi S, Guilyardi E (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449Google Scholar
  25. Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. doi: 10.1029/2004GL019733 Google Scholar
  26. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi: 10.1029/2010JC006695 Google Scholar
  27. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  28. Guo F, Liu Q, Zheng XT, Sun S (2013) The role of barrier layer in Southeastern Arabian Sea during the development of positive Indian Ocean Dipole events. Ocean Coast Res 12:245–252Google Scholar
  29. Guo F, Liu Q, Sun S, Yang J (2015) Three types of Indian Ocean Dipoles. J Clim 28:3073–3092Google Scholar
  30. Han W, Shinoda T, Fu LL, McCreary JP (2006) Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s. J Phys Oceanogr 111:679–690Google Scholar
  31. Hastenrath S (2000) Zonal circulations over the equatorial Indian Ocean. J Clim 13:2746–2756Google Scholar
  32. Hastenrath S, Polzin D (2004) Dynamics of the surface wind field over the equatorial Indian Ocean. Q J R Meteorol Soc 130:503–517Google Scholar
  33. Hendon HH (2003) Indonesian rainfall variability: impact of ENSO and local air–sea interaction. J Clim 16:1775–1790Google Scholar
  34. Hong CC, Li T, LinHo Chen YC (2010) Asymmetry of the Indian Ocean basinwide SST anomalies: roles of ENSO and IOD. J Clim 23:3563–3576Google Scholar
  35. Izumo T, Vialard J, Lengaigne M, de Boyer Montégut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172Google Scholar
  36. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829Google Scholar
  37. Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean Dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29:637–658Google Scholar
  38. Kajikawa Y, Yasunari T, Kawamura R (2003) The role of the local Hadley circulation over the Western Pacific on the zonally asymmetric anomalies over the Indian Ocean. J Meteor Soc Japan 81:259–276Google Scholar
  39. Kajtar JB, Santoso A, England MH, Cai W (2016) Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim Dyn. doi: 10.1007/s00382-016-3199-z Google Scholar
  40. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932Google Scholar
  41. Krishnaswamy J, Vaidyanathan S, Rajagopalan B, Bonell M, Sankaran M, Bhalla RS, Badiger S (2015) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45:175–184Google Scholar
  42. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309Google Scholar
  43. Lau NC, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episode. J Clim 16:3–20Google Scholar
  44. Li T, Wang B, Chang CP, Zhang YS (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135Google Scholar
  45. Liu L, Xie SP, Zheng XT, Li T, Du Y, Huang G, Yu WD (2014) Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim Dyn 43:1715–1730Google Scholar
  46. Liu H, Tang Y, Chen D, Lian T (2016) Predictability of the Indian Ocean Dipole in the coupled models. Clim Dyn. doi: 10.1007/s00382-016-3187-3 Google Scholar
  47. Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497Google Scholar
  48. Luo JJ, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J Clim 20:2178–2190Google Scholar
  49. Luo JJ, Zhang R, Behera S, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interactions between El Nino and extreme Indian Ocean dipole. J Clim 23:726–742Google Scholar
  50. Luo JJ, C Yuan, W Sasaki, SK Behera, Y Masumoto, T Yamagata, JY Lee, S Masson (2016), Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. In: Behera SK, Yamagata T (eds) Indo-Pacific climate variability and predictability, chapter 3, pp 63–107, World Sci Publ Co.
  51. Luo JJ, Liu G, Hendon H, Alves O, Yamagata T (2017) Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci Rep. doi: 10.1038/s41598-017-01479-9 Google Scholar
  52. Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 27. ISSN No 1288-1619Google Scholar
  53. Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707Google Scholar
  54. McPhaden MJ, Nagura M (2014) Indian Ocean dipole interpreted in terms of recharge oscillator theory. Clim Dyn 42:1569–1586Google Scholar
  55. Meehl GA, Arblaster JM (2002) Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J Clim 15:923–944Google Scholar
  56. Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158Google Scholar
  57. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559Google Scholar
  58. Morioka Y, Masson S, Terray P, Luo JJ, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047Google Scholar
  59. Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306Google Scholar
  60. Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290Google Scholar
  61. Prodhomme C, Terray P, Masson S, Boschat G, Izumo T (2015) Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Clim Dyn 44:977–1002Google Scholar
  62. Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmo Oceans 39:103–135Google Scholar
  63. Rao SA, Yamagata T (2004) Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys Res Lett 31:L19306. doi: 10.1029/2004GL020842 Google Scholar
  64. Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the Tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res 49:1549–1572Google Scholar
  65. Rao SA, Masson S, Luo JJ, Behera SK, Yamagata T (2007) Termination of Indian Ocean Dipole events in a coupled general circulation model. J Clim 20:3018–3035Google Scholar
  66. Rao SA, Luo JJ, Behera SK, Yamagata T (2009) Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Clim Dyn 33:751–767Google Scholar
  67. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi: 10.1029/2002JD002670 Google Scholar
  68. Roeckner E, G Baüml, L Bonaventura, R Brokopf, M Esch, M Giorgetta, S Hagemann et al (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut für Meteorologie, MPI-Report 353, HamburgGoogle Scholar
  69. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res 25:151–169Google Scholar
  70. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  71. Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763Google Scholar
  72. Schott FA, SP Xie, JP McCreary Jr (2009) Indian Ocean circulation and climate variability Rev Geophys 47:RG1002. doi: 10.1029/2007RG000245
  73. Shi L, Hendon HH, Alves O, Luo JJ, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884Google Scholar
  74. Shinoda T, Han W (2005) Influence of the Indian Ocean Dipole on atmospheric subseasonal variability. J Clim 18:3891–3909Google Scholar
  75. Shinoda T, Hendon HH, Alexander MA (2004a) Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep Sea Res 51:619–635Google Scholar
  76. Shinoda T, Alexander MA, Hendon HH (2004b) Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J Clim 17:362–372Google Scholar
  77. Spencer H, Sutton RT, Slingo JM, Roberts JM, Black E (2005) The Indian Ocean climate and dipole variability in the Hadley centre coupled GCMs. J Clim 18:2286–2307Google Scholar
  78. Sprintall J, Révelard A (2014) The Indonesian throughflow response to Indo-Pacific climate variability. J Geophys Res Oceans 119:1161–1175. doi: 10.1002/2013JC009533 Google Scholar
  79. Stuecker MF, Timmermann A, Yoon J, Jin F-F (2015) Tropospheric biennial oscillation (TBO) indistinguishable from white noise. Geophys Res Lett 42:7785–7791Google Scholar
  80. Stuecker MF, Timmermann A, Jin F-F, Chikamoto Y, Zhang W, Wittenberg AT, Widiasih E, Zhao S (2017) Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys Res Lett 44:2481–2492Google Scholar
  81. Sun S, Lan J, Fang Y, Tana X Gao (2015) A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J Clim 28:5063–5076Google Scholar
  82. Suzuki R, Behera SK, Iizuka S, Yamagata T (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophys Res. doi: 10.1029/2003JC001974 Google Scholar
  83. Terray P (2011) Southern hemisphere extra-tropical forcing: a new para-digm for El Niño-Southern Oscillation. Clim Dyn 36:2171–2199Google Scholar
  84. Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Nino and Southern Oscillation: a new perspective. J Clim 18:1351–1368Google Scholar
  85. Terray P, Dominiak S, Delecluse P (2005) Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Clim Dyn 24:169–195Google Scholar
  86. Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580Google Scholar
  87. Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo JJ, Yamagata T (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754Google Scholar
  88. Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533Google Scholar
  89. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201Google Scholar
  90. Tozuka T, Luo JJ, Masson S, Yamagata T (2007) Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J Clim 20:2881–2894Google Scholar
  91. Ummenhofer CC, England MH, Meyers GA, McIntosh PC, Pook MJ, Risbey JS, Sen Gupta A, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi: 10.1029/2008GL036801 Google Scholar
  92. Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report No 3, p 64Google Scholar
  93. Vinayachandran PN, Saji NH, Yamagata T (1999) Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophys Res Lett 26:1613–1616Google Scholar
  94. Wallace JM, Smith C, Jiang Q (1990) Spatial patterns of ocean–atmosphere interaction in the northern winter. J Clim 3:990–998Google Scholar
  95. Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean Dipole. Clim Dyn 42:991–1005Google Scholar
  96. Wang J, Yuan D (2015) Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events. J Phys Ocean 45:1804–1821Google Scholar
  97. Wang H, Murtugudde R, Kumar A (2016) Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim Dyn. doi: 10.1007/s00382-016-2977-y Google Scholar
  98. Webster PJ, Hoyos CD (2010) Beyond the spring barrier? Nat Geosci 3:152–153Google Scholar
  99. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360Google Scholar
  100. Xie S-P, Annamalai H, Schott F, McCreary JP Jr (2002) Origin and predictability of South Indian Ocean climate variability. J Clim 15:864–874Google Scholar
  101. Yamagata T, SK Behera, JJ Luo, S Masson, MR Jury, SA Rao (2004) Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Wang C, Xie SP, Carton JA (eds) Geophysical Monograph Series, vol 147, p 414Google Scholar
  102. Yang Y, Xie SP, Wu L, Kosoka Y, Lau NC, Vecchi GA (2015) Seasonality and predictability of the Indian Ocean Dipole mode: eNSO forcing and internal variability. J Clim 28:8021–8036Google Scholar
  103. Yu J, Lau KM (2005) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere-ocean GCM study. Meteor Atmos Phys. doi: 10.1007/s00703-004-0094-7 Google Scholar
  104. Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi: 10.1029/2005GL024327 Google Scholar
  105. Yuan D, Liu H (2009) Long wave dynamics of sea level variations during Indian Ocean dipole events. J Phys Oceanogr 39:1115–1132Google Scholar
  106. Yuan DL et al (2011) Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow. J Clim 24:3593–3608Google Scholar
  107. Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large scale atmosphere–ocean interaction over the North Pacific. J Clim 11:2473–2481Google Scholar
  108. Zhao YP, Chen YL, Wang F, Bai XZ, Wu AM (2009) Two modes of dipole events in tropical Indian Ocean. Sci China Ser D-Earth Sci 52:369–381Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, IPSLParisFrance
  2. 2.Indo-French Cell for Water Sciences, IISc-NIO-IITM–IRD Joint International Laboratory, IITMPuneIndia
  3. 3.Centre for Climate Change ResearchIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations