Skip to main content
Log in

Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The modulation of the Madden–Julian Oscillation (MJO) intensity by eastern Pacific (EP) type and central Pacific (CP) type of El Niño was investigated using observed data during the period of 1979–2013. MJO intensity is weakened (strengthened) over the equatorial western Pacific from November to April during EP (CP) El Niño. The difference arises from distinctive tendencies of column-integrated moist static energy (MSE) anomaly in the region. A larger positive MSE tendency was found during the convection developing period in the CP MJO than the EP MJO. The tendency difference is mainly caused by three meridional moisture advection processes: the advection of the background moisture by the intraseasonal wind anomaly, the advection of intraseasonal moisture anomaly by the mean wind and the nonlinear eddy advection. The advections’ differences are primarily caused by different intraseasonal perturbations and high-frequency activity whereas the background flow and moisture gradient are similar. The amplitudes in the intraseasonal suppressed convection anomaly over the central Pacific is critical in modulating the three meridional moisture advection processes. The influences on the central Pacific convection anomaly from seasonal mean moisture in two types of El Niños are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112:C11007

    Article  Google Scholar 

  • Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air–sea interactions at the onset of El Niño. J Climate 14:1702–1719

    Article  Google Scholar 

  • Chen L, Yu Y, Sun DZ (2013) Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 models? J Clim 26:4947–4961

    Article  Google Scholar 

  • Chen L, Yu Y, Zheng W (2016a) Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Clim Dyn 47:2617–2634. doi:10.1007/s00382-016-2988-8

    Article  Google Scholar 

  • Chen X, Ling J, Li C (2016b) Evolution of the Madden–Julian oscillation in two types of El Niño. J Clim 29:1919–1934

    Article  Google Scholar 

  • Chung P-H, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26:361–379

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deng L, Li T, Liu J, Peng M (2016) Factors controlling the interannual variations of MJO intensity. J Meteorol Res 30:328–340

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Feng J, Li JP (2013) Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J Clim 26:4773–4789. doi:10.1175/JCLI-D-12-00298.1

    Article  Google Scholar 

  • Feng J, Liu P, Chen W, Wang X (2015) Contrasting Madden–Julian oscillation activity during various stages of EP and CP El Niños. Atmos Sci Lett 16:32–37

    Article  Google Scholar 

  • Fink A, Speth P (1997) Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25–70-day) variability. Int J Climatol 17:1513–1534

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gushchina D, Dewitte B (2012) Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon Weather Rev 140:3669–3681

    Article  Google Scholar 

  • Gutzler DS (1991) Interannual fluctuations of intraseasonal variance of near-equatorial zonal winds. J Geophys Res Oceans 96:3173–3185

    Article  Google Scholar 

  • Hendon HH, Zhang C, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J Clim 12:2538–2550

    Article  Google Scholar 

  • Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543

    Article  Google Scholar 

  • Hsu P-c, Xiao T (2017) Differences in the initiation and development of Madden-Julian Oscillation over the Indian Ocean associated with two types of El Niño. J Clim. doi:10.1175/JCLI-D-16-0336.1 (in press)

    Google Scholar 

  • Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver SJ (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 26:6185–6214

    Article  Google Scholar 

  • Kajikawa Y, Yasunari T (2005) Interannual variability of the 10–25- and 30–60-day variation over the South China Sea during boreal summer. Geophys Res Lett 32:L04710

    Article  Google Scholar 

  • Kessler WS, Kleeman R (2000) Rectification of the Madden–Julian oscillation into the ENSO cycle. J Clim 13:3560–3575

    Article  Google Scholar 

  • Kim D, Kug J-S, Sobel AH (2014) Propagating versus Nonpropagating Madden–Julian Oscillation Events. J Climate 27:111–125

    Article  Google Scholar 

  • Kim D, Sobel AH, Maloney ED, Frierson DMW Kang I-S (2011) A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J Clim 24:5506–5520

    Article  Google Scholar 

  • Kiranmayi L, Maloney ED (2011) Intraseasonal moist static energy budget in reanalysis data. J Geophys Res Atmos 116:D21117

    Article  Google Scholar 

  • Lau K-M, Chan PH (1988) Intraseasonal and interannual variations of tropical convection: a possible link between the 40–50 day oscillation and ENSO? J Atmos Sci 45:506–521

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lin A, Li T (2008a) Energy Spectrum characteristics of boreal summer intraseasonal oscillations: climatology and variations during the ENSO developing and decaying phases. J Clim 21:6304–6320

    Article  Google Scholar 

  • Lin A, Li T (2008b) Energy spectrum characteristics of boreal summer intraseasonal oscillations: climatology and variations during the ENSO developing and decaying phases*. J Clim 21:6304–6320

    Article  Google Scholar 

  • Lin J-L et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Liu F, Li T, Wang H, Deng L, Zhang Y (2016) Modulation of boreal summer intraseasonal oscillations over the western North Pacific by ENSO. J Clim 29:7189–7201

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40-50-day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney ED (2009) The Moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22:711–729

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38

  • Moon J-Y, Wang B, Ha K-J (2011) ENSO regulation of MJO teleconnection. Clim Dyn 37:1133–1149

    Article  Google Scholar 

  • Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12

    Article  Google Scholar 

  • Raymond DJ, Fuchs Ž (2009) Moisture modes and the Madden–Julian oscillation. J Clim 22:3031–3046

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  • Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon Weather Rev 135:3325–3345

    Article  Google Scholar 

  • Sobel A, Maloney E (2013) Moisture modes and the Eastward propagation of the MJO. J Atmos Sci 70:187–192

    Article  Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  • Tang Y, Yu B (2008) MJO and its relationship to ENSO. J Geophys Res 113:D14106

    Article  Google Scholar 

  • Wang L, Chen L (2016) Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn Atmos Oceans 76(Part 1):116–126

    Article  Google Scholar 

  • Wang L, Li T, Zhou T (2012) Intraseasonal SST variability and air–sea interaction over the kuroshio extension region during Boreal Summer*. J Clim 25:1619–1634

    Article  Google Scholar 

  • Wang L, Li T, Maloney E, Wang B (2017) Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J Clim 30:3743–3769. doi:10.1175/JCLI-D-1116-0765.1171

    Article  Google Scholar 

  • Wheeler M, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler MC, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn 41:327–340

    Article  Google Scholar 

  • Yang J, Wang B, Wang B (2008) Anticorrelated intensity change of the quasi-biweekly and 30–50-day oscillations over the South China Sea. Geophys Res Lett 35:L16702

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003

    Google Scholar 

  • Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial pacific. J Clim 15:2429–2445

    Article  Google Scholar 

  • Zhou T, Wu B, Dong L (2014) Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia Pac J Atmos Sci 50:405–422

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program 2017YFA0603802/2015CB453200, NSFC 41705059/41630423/41475084/41575043 /41405075, NSF AGS-1643297, Jiangsu project BK20150062 and R2014SCT00, JAMSTEC JIJI Theme 1 project and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is SOEST contribution number 10245, IPRC contribution number 1290, and ESMC contribution 188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, T., Chen, L. et al. Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Clim Dyn 51, 687–700 (2018). https://doi.org/10.1007/s00382-017-3949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3949-6

Keywords

Navigation