Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe

  • Dulce Oliveira
  • Stéphanie Desprat
  • Qiuzhen Yin
  • Filipa Naughton
  • Ricardo Trigo
  • Teresa Rodrigues
  • Fátima Abrantes
  • Maria Fernanda Sánchez Goñi


The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model–data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial–marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial “optimum”.


Orbital Holocene analogues Model–data comparison Mediterranean vegetation Marine pollen analysis Insolation CO2 



Financial support was provided by WarmClim, a LEFE-INSU IMAGO project, and the Portuguese Foundation for Science and Technology (FCT) through the project CLIMHOL (PTDC/AAC-CLI/100157/2008), CCMAR (FCT Research Unit—UID/Multi/04326/2013), D. Oliveira’s doctoral grant (SFRH/BD/9079/2012), F. Naughton’s postdoctoral grant (SFRH/BPD/108712/2015) and T. Rodrigues’s postdoctoral grant (SFRH/BPD/108600/2015). Q.Z. Yin is Research Associate of the Belgian National Fund for Scientific Research (FRS-FNRS). This research used samples provided by the Integrated Ocean Drilling Program (IODP), Expedition 339. We would like to thank the scientists and technicians of IODP Expedition 339, the Bremen Core Repository, L. Devaux for technical assistance and V. Hanquiez for drawing Fig. 1. Computational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by FRS-FNRS. We thank three anonymous reviewers for their constructive and insightful comments.

Supplementary material

382_2017_3948_MOESM1_ESM.png (516 kb)
Fig. S1 Percentage pollen diagram of selected morphotypes and ecological groups from Site U1385 plotted against depth. Ecological groups include Mediterranean forest (MF) which here includes the Mediterranean taxa and all temperate trees and shrub taxa, excluding Pinus, Cedrus and Cupressaceae; Mediterranean taxa: Quercus evergreen-type, Cistus, Olea, Phillyrea and Pistacia; and semi-desert plants: Artemisia, Chenopodiaceae, Ephedra distachya-type and Ephedra fragilis-type. On the right of the diagram are represented the pollen zones and results of the cluster analysis (PNG 515 KB)
382_2017_3948_MOESM2_ESM.docx (13 kb)
Table S1 AMS 14C radiocarbon dates from Site U1385 and calibrated ages (cal yr BP) using the Marine13 calibration curve (Reimer et al. 2013) implemented in CALIB 7.1 (Stuiver and Reimer 1993; http://calib.qub.ac.uk/calib/) (DOCX 12 KB)
382_2017_3948_MOESM3_ESM.docx (14 kb)
Table S2 Description and interpretation of the pollen record from Site U1385 for last 17.5 ka. Pollen zones are designated as following: U1385 (site name)—number of the pollen zone. MF: Mediterranean forest (DOCX 13 KB)
382_2017_3948_MOESM4_ESM.docx (12 kb)
Table S3 Values of Mediterranean forest (MF) and Mediterranean taxa maxima (averaged and absolute) for each interglacial during the interval comprising the major expansion of both ecological groups. For MIS 1 both values from core MD95-2042 and Site U1385 (italic) are given (DOCX 12 KB)


  1. Bard E, Rostek F, Turon J-L, Gendreau S (2000) Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289:1321–1324. doi: 10.1126/science.289.5483.1321 CrossRefGoogle Scholar
  2. Bauch HA, Erienkeuser H, Helkme JP, Struck U (2000) A palaeoclimatic evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic (Nordic Seas). Glob Planet Change 24:27–39CrossRefGoogle Scholar
  3. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367CrossRefGoogle Scholar
  4. Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288CrossRefGoogle Scholar
  5. Berger A, Loutre MF (2003) Climate 400,000 years ago, a key to the future? In: Droxler A, Burckle L, Poore A (eds) Earth climate and orbital eccentricity: the marine isotope stage 11 question. Geophysical monograph 137. American Geophysical Union, Washington, pp 17–26CrossRefGoogle Scholar
  6. Berger A, Loutre MF, Mélice JL (2006) Equatorial insolation: from precession harmonics to eccentricity frequencies. Clim Past 2:131–136. doi: 10.5194/cp-2-131-2006 CrossRefGoogle Scholar
  7. Billups K, Scheinwald A (2014) Origin of millennial-scale climate signals in the subtropical North Atlantic. Paleoceanography 29:612–627. doi: 10.1002/2014PA002641 CrossRefGoogle Scholar
  8. Billups K, Rabideaux N, Stoffel J (2011) Suborbital-scale surface and deep water records in the subtropical North Atlantic: implications on thermohaline overturn. Quat Sci Rev 30:2976–2987. doi: 10.1016/j.quascirev.2011.06.015 CrossRefGoogle Scholar
  9. Bintanja R, van de Wal RSW (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–872. doi: 10.1038/nature07158 CrossRefGoogle Scholar
  10. Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128. doi: 10.1038/nature03975 CrossRefGoogle Scholar
  11. Bosmans JHC, Drijfhout SS, Tuenter E, Hilgen FJ, Lourens LJ, Rohling EJ (2015) Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat Sci Rev 123:16–30. doi: 10.1016/j.quascirev.2015.06.008 CrossRefGoogle Scholar
  12. Bounceur N, Crucifix M, Wilkinson RD (2015) Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach. Earth Syst Dyn 6:205–224. doi: 10.5194/esd-6-205-2015 CrossRefGoogle Scholar
  13. Bradshaw RHW, Webb T (1985) Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66:721–737. doi: 10.2307/1940533 CrossRefGoogle Scholar
  14. Brovkin V, Ganapolski A, Svirezhev Y (1997) A continuous climate vegetation classification for use in climate-biosphere studies. Ecol Modell 101:251–261CrossRefGoogle Scholar
  15. Candy I, Mcclymont EL (2013) Interglacial intensity in the North Atlantic over the last 800000 years: Investigating the complexity of the mid-Brunhes event. J Quat Sci 28:343–348. doi: 10.1002/jqs.2632 CrossRefGoogle Scholar
  16. Candy I, Schreve DC, Sherriff J, Tye GJ (2014) Marine Isotope Stage 11: Palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth-Science Rev 128:18–51. doi: 10.1016/j.earscirev.2013.09.006 CrossRefGoogle Scholar
  17. Castro EB, González MAC, Tenorio MC, Bombín RE, Antón MG, Fuster MG, Manzaneque FG, Sáiz JCM, Juaristi CM, Pajares PR, Ollero HS (1997) Los bosques ibéricos: una Interpretación Geobotánica. Editorial Planeta, Barcelona, p 572Google Scholar
  18. Chabaud L, Sánchez Goñi MF, Desprat S, Rossignol L (2014) Land-sea climatic variability in the eastern North Atlantic subtropical region over the last 14,200 years: atmospheric and oceanic processes at different timescales. Holocene 24:787–797. doi: 10.1177/0959683614530439 CrossRefGoogle Scholar
  19. Clark PU, Alley RB, Pollard D (1999) Northern Hemisphere ice sheet influences on global climate change. Science 286:1104–1111CrossRefGoogle Scholar
  20. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373CrossRefGoogle Scholar
  21. de Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–1625. doi: 10.1126/science.1153929 CrossRefGoogle Scholar
  22. de Beaulieu JL, Andrieu-Ponel V, Reille M, Grüger E, Tzedakis C, Svobodova H (2001) An attempt at correlation between the Velay pollen sequence and the Middle Pleistocene stratigraphy from central Europe. Quat Sci Rev 20:1593–1602. doi: 10.1016/S0277-3791(01)00027-0 CrossRefGoogle Scholar
  23. de Abreu L, Abrantes FF, Shackleton NJ, Tzedakis PC, McManus JF, Oppo DW, Hall MA (2005) Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: a partial analogue to the Holocene? Paleoceanography 20:1–15. doi: 10.1029/2004PA001091 CrossRefGoogle Scholar
  24. Desprat S, Sánchez Goñi MF, Naughton F, Turon JL, Duprat J, Malaize B, Cortijo E, Peypouquet JP (2007) Climate variability of the last five isotopic interglacials: direct land-sea-ice correlation from the multiproxy analysis of North-Western Iberian margin deep-sea cores. Dev Quat Sci 7:375–386Google Scholar
  25. Desprat S, Combourieu-Nebout N, Essallami L, Sicre MA, Dormoy I, Peyron O, Siani G, Bout Roumazeilles V, Turon JL (2013) Deglacial and holocene vegetation and climatic changes in the southern central Mediterranean from a direct land-sea correlation. Clim Past 9:767–787. doi: 10.5194/cp-9-767-2013 CrossRefGoogle Scholar
  26. Dickson AJ, Beer CJ, Dempsey C, Maslin MA, Bendle JA, McClymont EL, Pancost RD (2009) Oceanic forcing of the Marine Isotope Stage 11 interglacial. Nat Geosci 2:428–433. doi: 10.1038/ngeo527 CrossRefGoogle Scholar
  27. Droxler AW, Farrell JW (2000) Marine Isotope Stage 11 (MIS 11): new insights for a warm future. Glob Planet Change 24:1–5CrossRefGoogle Scholar
  28. Droxler AW, Poore RZ, Burckle LH (eds) (2003) Earth’s climate and orbital eccentricity: the marine isotope stage 11 question. Geophysical Monograph Series. American Geophysical Union, Washington, D. C., p 240. ISBN:0-87590-996-5Google Scholar
  29. Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU, DeConto R, Horton BP, Rahmstorf S, Raymo ME (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:aaa4019. doi: 10.1126/science.aaa4019
  30. EPICA CM (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  31. Expedition 339 Scientists (2013) Site U1385. In: Stow DAV, Hernández-Molina FJ, Alvarez Zarikian CA, the Expedition 339 Scientists (eds) Proceedings IODP 339. Integrated Ocean Drilling Program Management International, Inc., Tokyo. doi: 10.2204/iodp.proc.339.103.201
  32. Faegri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, Fourth edn. Wiley, Chichester, p 328Google Scholar
  33. Ferretti P, Crowhurst SJ, Hall MA, Cacho I (2010) North Atlantic millennial-scale climate variability 910 to 790 ka and the role of the equatorial insolation forcing. Earth Planet Sci Lett 293:28–41. doi: 10.1016/j.epsl.2010.02.016 CrossRefGoogle Scholar
  34. Ferretti P, Crowhurst SJ, Naafs BDA, Barbante C (2015) The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability. Quat Sci Rev 108:95–110. doi: 10.1016/j.quascirev.2014.10.024 CrossRefGoogle Scholar
  35. Fiúza AFG (1984) Hidrologia e Dinâmica das Águas Costeiras de Portugal. Ph.D. Dissertation, University of Lisbon, p 294Google Scholar
  36. Fletcher WJ, Sánchez Goñi MF (2008) Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 year. Quat Res 70:451–464. doi: 10.1016/j.yqres.2008.07.002 CrossRefGoogle Scholar
  37. Ganopolski A, Winkelmann R, Schellnhuber HJ (2016) Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529:200–203. doi: 10.1038/nature16494 CrossRefGoogle Scholar
  38. Giaccio B, Regattieri E, Zanchetta G, Nomade S, Renne PR, Sprain CJ, Drysdale RN, Tzedakis PC, Messina P, Scardia G, Sposato A, Bassinot F (2015) Duration and dynamics of the best orbital analogue to the present interglacial. Geology 43:603–606. doi: 10.1130/G36677.1 CrossRefGoogle Scholar
  39. Goosse H, Brovkin V, Fichefet T, Haarsma R, Huybrechts P, Jongma J, Mouchet A, Selten F, Barriat PY, Campin JM, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre MF, Maqueda MAM, Opsteegh T, Mathieu PP, Munhoven G, Petterson JE, Renssen H, Roche D, Schaeffer M, Tartinville B, Timmermann A, Weber SL (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:603–633CrossRefGoogle Scholar
  40. Gouveia C, Trigo RM, DaCamara CC, Libonati R, Pereira JMC (2008) The North Atlantic Oscillation and European vegetation dynamics. Int J Climatol 28:1835–1847CrossRefGoogle Scholar
  41. Helmke JP, Bauch HA, Röhl U, Kandiano ES (2008) Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11. Clim Past 4:181–190. doi: 10.5194/cp-4-181-2008 CrossRefGoogle Scholar
  42. Hernández-Almeida I, Sierro FJ, Cacho I, Flores JA (2012) Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography. doi: 10.1029/2011PA002209 Google Scholar
  43. Heusser L, Balsam WL (1977) Pollen distribution in the northeast Pacific Ocean. Quat Res 7:45–62. doi: 10.1016/0033-5894(77)90013-8 CrossRefGoogle Scholar
  44. Hodell DA, Channell JET (2016) Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Clim Past 12:1805–1828. doi: 10.5194/cp-12-1805-2016 CrossRefGoogle Scholar
  45. Hodell DA, Channeil JET, Curtis JH, Romero OE, Röhl U (2008) Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~ 640 ka)? Paleoceanography 23:1–16. doi: 10.1029/2008PA001591 CrossRefGoogle Scholar
  46. Hodell DA, Lourens L, Stow DV, Hernández-Molina J, Alvarez Zarikian C, Shackleton Site Project Members (2013) The “Shackleton Site” (IODP Site U1385) on the Iberian Margin. Proc Integr Ocean Drill Progr 16:13–19. doi: 10.5194/sd-16-13-2013 Google Scholar
  47. Hodell D, Lourens L, Crowhurst S, Konijnendijk T, Tjallingii R, Jimenez-Espejo F, Skinner L, Tzedakis PC (2015) A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Glob Planet Change 1385:49–64. doi: 10.1016/j.gloplacha.2015.07.002 CrossRefGoogle Scholar
  48. IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, p 1535. doi: 10.1017/CBO9781107415324 Google Scholar
  49. Kandiano ES, Bauch HA, Fahl K, Helmke JP, Röhl U, Pérez-Folgado M, Cacho I (2012) The meridional temperature gradient in the eastern North Atlantic during MIS 11 and its link to the ocean–atmosphere system. Palaeogeogr Palaeoclimatol Palaeoecol 333–334:24–39. doi: 10.1016/j.palaeo.2012.03.005 CrossRefGoogle Scholar
  50. Lang N, Wolff EW (2011) Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Clim Past 7:361–380. doi: 10.5194/cp-7-361-2011 CrossRefGoogle Scholar
  51. Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006) The Mediterranean climate: an overview of the main characteristics and issues. Dev Earth Environ Sci 4:1–26. doi: 10.1016/S1571-9197(06)80003-0 Google Scholar
  52. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. doi: 10.1029/2004PA001071 Google Scholar
  53. Loidi J, Biurrun I, Campos JA, Garcia-Mijangos I, Herrera M (2007) A survey of heath vegetation of the Iberian Peninsula and Northern Morocco: a biogeographical and bioclimatic approach. Phytocoenologia 37:341–370CrossRefGoogle Scholar
  54. Loutre MF, Berger AL (2003) Marine Isotope Stage 11 as an analogue for the present interglacial. Glob Planet Change 36:209–217. doi: 10.1016/S0921-8181(02)00186-8 CrossRefGoogle Scholar
  55. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  56. Magny M, Vannière B, Calo C, Millet L, Leroux A, Peyron O, Zanchetta G, La Mantia T, Tinner W (2011) Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quat Sci Rev 30:2459–2475. doi: 10.1016/j.quascirev.2011.05.018 CrossRefGoogle Scholar
  57. Magny M, Combourieu-Nebout N, De Beaulieu JL, Bout-Roumazeilles V, Colombaroli D, Desprat S, Francke A, Joannin S, Ortu E, Peyron O, Revel M, Sadori L, Siani G, Sicre MA, Samartin S, Simonneau A, Tinner W, Vannière B, Wagner B, Zanchetta G, Anselmetti F, Brugiapaglia E, Chapron E, Debret M, Desmet M, Didier J, Essallami L, Galop D, Gilli A, Haas JN, Kallel N, Millet L, Stock A, Turon JL, Wirth S, Vannière B, Calo C, Millet L, Leroux A, Peyron O, Zanchetta G, La Mantia T, Tinner W (2013) North-south palaeohydrological contrasts in the central mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim Past 9:2459–2475. doi: 10.1016/j.quascirev.2011.05.018 CrossRefGoogle Scholar
  58. Magri D (2012) Quaternary history of Cedrus in Southern Europe. Ann Di Bot 57–66. doi: 10.4462/annbotrm-10022
  59. Magri D, Tzedakis P (2000) Orbital signatures and long-term vegetation patterns in the Mediterranean. Quat Int 73–74:69–78. doi: 10.1016/S1040-6182(00)00065-3 CrossRefGoogle Scholar
  60. Margari V, Skinner LC, Hodell DA, Martrat B, Toucanne S, Grimalt JO, Gibbard PL, Lunkka JP, Tzedakis PC (2014) Land-ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology 42:183–186. doi: 10.1130/G35070.1 CrossRefGoogle Scholar
  61. Masson-Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre MF, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E (2006) Past temperature reconstructions from deep ice cores: relevance for future climate change. Clim Past 2:145–165. doi: 10.5194/cp-2-145-2006 CrossRefGoogle Scholar
  62. Masson-Delmotte V, Stenni B, Pol K, Braconnot P, Cattani O, Falourd S, Kageyama M, Jouzel J, Landais A, Minster B, Barnola JM, Chappellaz J, Krinner G, Johnsen S, Röthlisberger R, Hansen J, Mikolajewicz U, Otto-Bliesner B (2010) EPICA Dome C record of glacial and interglacial intensities. Quat Sci Rev 29:113–128. doi: 10.1016/j.quascirev.2009.09.030 CrossRefGoogle Scholar
  63. McManus J, Oppo D, Cullen J, Healey S (2003) Marine Isotope Stage 11 (MIS 11): Analog for Holocene and future climate? In: Droxler AW, Poore RZ, Burckle LH (eds) Earth’s climate and orbital eccentricity: the marine isotope stage 11 question. American Geophysical Union, Washington D. C., pp 69–85CrossRefGoogle Scholar
  64. Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL, Haltia-Hovi E, Kukkonen M, Lozhkin AV, Rosen P, Tarasov P, Vogel H, Wagner B (2012) 2.8 Million years of Arctic climate change from Lake El’gygytgyn. NE Russ Sci 337:315–320. doi: 10.1126/science.1222135 Google Scholar
  65. Müller PJ, Kirst G, Ruhland G, Von Storch I, Rosell-Melé A (1998) Calibration of the alkenone paleotemperature index Uk37- based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62:1757–1772CrossRefGoogle Scholar
  66. Naafs BDA, Hefter J, Stein R (2013) Millennial-scale ice rafting events and Hudson Strait Heinrich (-like) Events during the late Pliocene and Pleistocene: a review. Quat Sci Rev 80:1–28. doi: 10.1016/j.quascirev.2013.08.014 CrossRefGoogle Scholar
  67. Naughton F, Sánchez Goñi MF, Desprat S, Turon JL, Duprat J, Malaizé B, Joli C, Cortijo E, Drago T, Freitas MC (2007) Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Mar Micropaleontol 62:91–114. doi: 10.1016/j.marmicro.2006.07.006 CrossRefGoogle Scholar
  68. Naughton F, Sánchez Goñi MF, Rodrigues T, Salgueiro E, Costas S, Desprat S, Duprat J, Michel E, Rossignol L, Zaragosi S, Voelker AHL, Abrantes F (2016) Climate variability across the last deglaciation in NW Iberia and its margin. Quat Int 414:9–22. doi: 10.1016/j.quaint.2015.08.073 CrossRefGoogle Scholar
  69. Nieto-Lugilde D, Maguire KC, Blois JL, Williams JW, Fitzpatrick MC (2015) Close agreement between pollen-based and forest inventory-based models of vegetation turnover. Glob Ecol Biogeogr 24:905–916. doi: 10.1111/geb.12300 CrossRefGoogle Scholar
  70. Oliveira D, Desprat S, Rodrigues T, Naughton F, Hodell D, Trigo R, Rufino M, Lopes C, Abrantes F, Sánchez Goñi MF (2016) The complexity of millennial-scale variability in southwestern Europe during MIS 11. Quat Res. doi: 10.1016/j.yqres.2016.09.002 Google Scholar
  71. Oliveira D, Sánchez Goñi MF, Naughton F, Polanco-Martínez JM, Jimenez-Espejo FJ, Grimalt JO, Martrat B, Voelker AHL, Trigo R, Hodell D, Abrantes F, Desprat S (2017) Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial. Quat Sci Rev 161:1–17. doi: 10.1016/j.quascirev.2017.02.013 CrossRefGoogle Scholar
  72. Pailler D, Bard E (2002) High frequency palaeoceanographic changes during the past 140 000 year recorded by the organic matter in sediments of the Iberian Margin. Palaeogeogr Palaeoclimatol Palaeoecol 81:431–452CrossRefGoogle Scholar
  73. Palumbo E, Flores J-A, Perugia C, Petrillo Z, Voelker AHL, Amore FO (2013) Millennial scale coccolithophore paleoproductivity and surface water changes between 445 and 360 ka (Marine Isotope Stages 12/11) in the Northeast Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 383–384:27–41. doi: 10.1016/j.palaeo.2013.04.024 CrossRefGoogle Scholar
  74. Past Interglacials Working Group of PAGES (2016) Interglacials of the last 800,000 years. Rev Geophys. doi: 10.1002/2015RG000482 Google Scholar
  75. Peinado Lorca M, Martinez-Parras JM (1987) Castilla-La Mancha. In: Peinado Lorca M, Rivas-Martinez S (eds) La vegetación de España. Universidad de Alcala de Henares, Alcala de Henares, pp 163–196Google Scholar
  76. Peliz A, Dubert J, Santos AMP, Oliveira PB, Le Cann B (2005) Winter upper ocean circulation in the Western Iberian basin—fronts, eddies and poleward flows: an overview. Deep Res Part I Oceanogr Res Pap 52:621–646. doi: 10.1016/j.dsr.2004.11.005 CrossRefGoogle Scholar
  77. Pol K, Masson-Delmotte V, Johnsen S, Bigler M, Cattani O, Durand G, Falourd S, Jouzel J, Minster B, Parrenin F (2010) New MIS 19 EPICA Dome C high resolution deuterium data: Hints for a problematic preservation of climate variability at sub-millennial scale in the “oldest ice”. Earth Planet Sci Lett 298:95–103. doi: 10.1016/j.epsl.2010.07.030 CrossRefGoogle Scholar
  78. Pol K, Debret M, Masson-Delmotte V, Capron E, Cattani O, Dreyfus G, Falourd S, Johnsen S, Jouzel J, Landais A, Minster B, Stenni B (2011) Links between MIS 11 millennial to sub-millennial climate variability and long term trends as revealed by new high resolution EPICA Dome C deuterium data - A comparison with the Holocene. Clim Past 7:437–450. doi: 10.5194/cp-7-437-2011 CrossRefGoogle Scholar
  79. Polunin O, Walters M (1985) A Guide to the vegetation of Britain and Europe. Oxford University Press, New York, p 238Google Scholar
  80. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369. doi: 10.1038/330367a0 CrossRefGoogle Scholar
  81. Prentice IC, Berglund BE, Olsson T (1987) Quantitative forest composition sensing characteristics of pollen samples from Swedish lakes. Boreas 16:43–54CrossRefGoogle Scholar
  82. Quezel P (2002) Réflexions sur l’évolution de la flore et de la végétation au Maghreb méditerranéen. Ibis, ParisGoogle Scholar
  83. Raymo ME, Mitrovica JX (2012) Collapse of polar ice sheets during the stage 11 interglacial. Nature 483:453–456. doi: 10.1038/nature10891 CrossRefGoogle Scholar
  84. Raynaud D, Barnola J-M, Souchez R, Lorrain R, Petit JR, Duval P, Lipenkov VY (2005) Palaeoclimatology: the record for marine isotopic stage 11. Nature 436:39–40. doi: 10.1038/43639b CrossRefGoogle Scholar
  85. Reille M, Beaulieu J-L, Svobodova H, Andrieu-Ponel V, Goeury C (2000) Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). J Quat Sci 15:665–685CrossRefGoogle Scholar
  86. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hattté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott M, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  87. Renssen H, Seppa H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414CrossRefGoogle Scholar
  88. Reyes AV, Carlson AE, Beard BL, Hatfield RG, Stoner JS, Winsor K, Welke B, Ullman DJ (2014) South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510:525–528. doi: 10.1038/nature13456 CrossRefGoogle Scholar
  89. Rind D (1998) Latitudinal temperature gradients and climate change. J Geophys Res 103:5943–5971CrossRefGoogle Scholar
  90. Roberts DL, Karkanas P, Jacobs Z, Marean CW, Roberts RG (2012) Melting ice sheets 400,000 year ago raised sea level by 13 m: Past analogue for future trends. Earth Planet Sci Lett 357–358:226–237. doi: 10.1016/j.epsl.2012.09.006 CrossRefGoogle Scholar
  91. Rodrigues T, Grimalt JO, Abrantes FG, Flores JA, Lebreiro S (2009) Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch). Geochemistry Geophys Geosystems 10:1–17. doi: 10.1029/2008GC002367 CrossRefGoogle Scholar
  92. Rohling EJ, Braun K, Grant K, Kucera M, Roberts AP, Siddall M, Trommer G (2010) Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet Sci Lett 291:97–105. doi: 10.1016/j.epsl.2009.12.054 CrossRefGoogle Scholar
  93. Ruddiman WF (2005) Cold climate during the closest stage 11 analog to recent millennia. Quat Sci Rev 24:1111–1121CrossRefGoogle Scholar
  94. Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45:1–37CrossRefGoogle Scholar
  95. Ruddiman WF, McIntyre A (1984) Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N to 63°N. Geol Soc Am Bull 95:381–396CrossRefGoogle Scholar
  96. Salgueiro E, Naughton F, Voelker AHL, de Abreu L, Alberto A, Rossignol L, Duprat J, Magalhães VH, Vaqueiro S, Turon JL, Abrantes F (2014) Past circulation along the western Iberian margin: a time slice vision from the Last Glacial to the Holocene. Quat Sci Rev 106:316–329. doi: 10.1016/j.quascirev.2014.09.001 CrossRefGoogle Scholar
  97. Sánchez Goñi MF, Landais A, Fletcher WJ, Naughton F, Desprat S, Duprat J (2008) Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat Sci Rev 27:1136–1151. doi: 10.1016/j.quascirev.2008.03.003 CrossRefGoogle Scholar
  98. Sánchez Goñi MF, Rodrigues T, Hodell DA, Polanco-Martínez JM, Alonso-García M, Hernández-Almeida I, Desprat S, Ferretti P (2016) Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial. Earth Planet Sci Lett 448:81–93. doi: 10.1016/j.epsl.2016.05.018 CrossRefGoogle Scholar
  99. Shackleton NJ, Hall MA, Vincent E (2000) Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15:565–569. doi: 10.1029/2000PA000513 CrossRefGoogle Scholar
  100. Skinner LC, Shackleton NJ (2005) An Atlantic lead over Pacific deep-water change across Termination I: implications for the application of the marine isotope stage stratigraphy. Quat Sci Rev 24:571–580. doi: 10.1016/j.quascirev.2004.11.008 CrossRefGoogle Scholar
  101. Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. doi: 10.5194/nhess-11-33-2011 CrossRefGoogle Scholar
  102. Spratt RM, Lisiecki LE (2016) A Late Pleistocene sea level stack. Clim Past 12:1079–1092. doi: 10.5194/cp-12-1079-2016 CrossRefGoogle Scholar
  103. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230CrossRefGoogle Scholar
  104. Trigo RM, Pozo-Vazquez D, Osborn TJ, Castro-Díez Y, Gamiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian peninsula. Int J Climatol 24:925–944. doi: 10.1002/joc.1048 CrossRefGoogle Scholar
  105. Trigo RM, Valente MA, Trigo IF, Miranda PMA, Ramos AM, Paredes D, García-Herrera R (2008) The impact of North Atlantic wind and cyclone trends on european precipitation and significant wave height in the Atlantic. Ann N Y Acad Sci 1146:212–234. doi: 10.1196/annals.1446.014 CrossRefGoogle Scholar
  106. Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2042–2066. doi: 10.1016/j.quascirev.2007.03.014 CrossRefGoogle Scholar
  107. Tzedakis PC (2010) The MIS 11–MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis. Clim Past 6:131–144. doi: 10.5194/cp-6-131-2010 CrossRefGoogle Scholar
  108. Tzedakis PC, Hooghiemstra H, Pälike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat Sci Rev 25:3416–3430. doi: 10.1016/j.quascirev.2006.09.002 CrossRefGoogle Scholar
  109. Tzedakis PC, Raynaud D, McManus JF, Berger A, Brovkin V, Kiefer T (2009a) Interglacial diversity. Nat Geosci 2:751–755. doi: 10.1038/ngeo660 CrossRefGoogle Scholar
  110. Tzedakis PC, Pälike H, Roucoux KH, de Abreu L (2009b) Atmospheric methane, southern European vegetation and low-mid latitude links on orbital and millennial timescales. Earth Planet Sci Lett 277:307–317. doi: 10.1016/j.epsl.2008.10.027 CrossRefGoogle Scholar
  111. Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat Geosci 5:138–141. doi: 10.1038/ngeo1358 CrossRefGoogle Scholar
  112. Tzedakis PC, Crucifix M, Mitsui T, Wolff EW (2017) A simple rule to determine which insolation cycles lead to interglacials. Nature 542:427–432. doi: 10.1038/nature21364 CrossRefGoogle Scholar
  113. van der Wiel AM, Wijmstra TA (1987) Palynology of 112.8–197.8 m interval of the core Tenaghi Philippon III, Middle Pleistocene of Macedonia. Rev Palaeobot Palynol 52:89–117CrossRefGoogle Scholar
  114. Villanueva J, Pelejero C, Grimalt JO (1997) Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane inputs in paleoceanography. J Chromatogr A 757:145–151. doi: 10.1016/S0021-9673(96)00669-3 CrossRefGoogle Scholar
  115. Weirauch D, Billups K, Martin P (2008) Evolution of millennial-scale climate variability during the mid-Pleistocene. Paleoceanography 23:PA3216. doi: 10.1029/2007PA001584 CrossRefGoogle Scholar
  116. Williams JW, Jackson ST (2003) Palynological and AVHRR observations of modern vegetational gradients in eastern North America. The Holocene 13:485–497. doi: 10.1191/0959683603hl613rp CrossRefGoogle Scholar
  117. Yin QZ, Berger A (2010) Insolation and CO2 contribution to the interglacial climate before and after the mid-brunhes event. Nat Geosci 3(4):243–246CrossRefGoogle Scholar
  118. Yin QZ, Berger A (2012) Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Clim Dyn 38:709–724. doi: 10.1007/s00382-011-1013-5 CrossRefGoogle Scholar
  119. Yin Q, Berger A (2015) Interglacial analogues of the Holocene and its natural near future. Quat Sci Rev 120:28–46. doi: 10.1016/j.quascirev.2015.04.008p CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dulce Oliveira
    • 1
    • 2
    • 3
    • 4
  • Stéphanie Desprat
    • 1
    • 2
  • Qiuzhen Yin
    • 5
  • Filipa Naughton
    • 3
    • 4
  • Ricardo Trigo
    • 6
  • Teresa Rodrigues
    • 3
    • 4
  • Fátima Abrantes
    • 3
    • 4
  • Maria Fernanda Sánchez Goñi
    • 1
    • 2
  1. 1.EPHE, PSL Research UniversityPessacFrance
  2. 2.Laboratoire Paléoclimatologie et Paléoenvironnements MarinsUniversity of Bordeaux, EPOC, UMR 5805PessacFrance
  3. 3.Divisão de Geologia e Georecursos MarinhosInstituto Português do Mar e da Atmosfera (IPMA)LisboaPortugal
  4. 4.CCMAR, Centro de Ciências do MarUniversidade do AlgarveFaroPortugal
  5. 5.Georges Lemaître Center for Earth and Climate Research, Earth and Life InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  6. 6.Instituto Dom LuizUniversidade de LisboaLisboaPortugal

Personalised recommendations