Advertisement

Climate Dynamics

, Volume 50, Issue 11–12, pp 4707–4719 | Cite as

Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

  • Zesheng Chen
  • Yan Du
  • Zhiping Wen
  • Renguang Wu
  • Chunzai Wang
Article

Abstract

This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a “C-shape” wind anomaly pattern in the lower troposphere. The “C-shape” wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated “C-shape” wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

Keywords

SETIO SST warming 2015/16 El Niño Anomalous anticyclone “C-shape” wind anomaly pattern Indo-Pacific climate 

Notes

Acknowledgements

We thank two anonymous reviewers for their comments and suggestions which help improve the manuscript. This work is supported by the National Key Basic Research and Development Projects of China (2016YFA0600601), the National Natural Science Foundation of China (41525019, 41530530, 41530425 and 41275081), the State Oceanic Administration of China (GASI-IPOVAI-02), the Chinese Academy of Sciences (XDA11010000), the Pioneer Hundred Talents Program of the Chinese Academy of Sciences and the leading talents of Guangdong province program and the support of the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ1603).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Chen W (2002) Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chin J Atmos Sci (Chinese) 26:595–610Google Scholar
  2. Chen Z, Wen Z, Wu R, Zhao P, Cao J (2014) Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43:469–481. doi: 10.1007/s00382-013-1943-1 CrossRefGoogle Scholar
  3. Chen Z, Wen Z, Wu R, Lin X, Wang J (2016a) Relative importance of tropical SST anomalies in maintaining the western north pacific anomalous anticyclone during El Niño to La Niña transition years. Clim Dyn 46:1027–1041. doi: 10.1007/s00382-015-2630-1 CrossRefGoogle Scholar
  4. Chen J, Wen Z, Wang X (2016b) Analysis of winter and spring precipitation over Southern China during 2015/2016 extreme El Niño. Trans Atmos Sci (Chinese) 39:813–826 b)Google Scholar
  5. Chou C, Huang L-F, Tu J-Y, Tseng L, Hsueh Y-C (2009) El Niño impacts on precipitation in the western North Pacifc-East Asian sector. J Clim 22:2039–2057CrossRefGoogle Scholar
  6. Du Y, Xie S-P, Huang G, Hu K-M (2009) Role of air-sea interaction in the long persistence of El Nino-induced North Indian Ocean warming. J Clim 22:2023–2038CrossRefGoogle Scholar
  7. Du Y, Yang L, Xie S-P (2011) Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Nino. J Clim 24:315–322CrossRefGoogle Scholar
  8. Fan L, Shin S-I, Liu Q, Liu Z (2013) Relative Importance of Tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys Res Lett 40:2471–2477. doi: 10.1002/grl.50494 CrossRefGoogle Scholar
  9. Gent PR, Danabasoglu G, Donner LJ et al (2011) The Community climate system model version 4. J Clim 24: 4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  10. He Z, Wu R (2014) Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Clim Dyn 42:2323–2337. doi: 10.1007/s00382-014-2123-7 CrossRefGoogle Scholar
  11. He Z, Wu R, Wang W (2015) Signals of the South China Sea summer rainfall variability in the Indian Ocean. Clim Dyn 46:3181–3195. doi: 10.1007/s00382-015-2760-5 CrossRefGoogle Scholar
  12. Hu KM, Huang G, Huang RH (2011) The impact of tropical Indian Ocean variability on summer surface air temperature in China. J Clim 24:5365–5377CrossRefGoogle Scholar
  13. Hu W, Wu R, Liu Y (2014) Relation of the South China Sea precipitation variability to tropical indo-pacific SST anomalies during spring-to-summer transition. J Clim 27:5451–5467CrossRefGoogle Scholar
  14. Huang R-H, Wu Y-F (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32CrossRefGoogle Scholar
  15. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for community atmosphere model. J Clim 21:5145–5153. doi: 10.1175/2008JCLI2292.1 CrossRefGoogle Scholar
  16. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  17. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  18. Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci 110:7574–7579CrossRefGoogle Scholar
  19. Lau N-C, Nath MJ (2003) Atmosphere–ocean variations in the Indo Pacific sector during ENSO episodes. J Clim 16:3–20CrossRefGoogle Scholar
  20. Lee EJ, Yeh SW, Jhun JG, Moon BK (2006) Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophy Res Lett 33:L21702. doi: 10.1029/2006GL027474 CrossRefGoogle Scholar
  21. Lin SJ (2004) A ‘‘vertically Lagrangian’’ finite-volume dynamical core for global models. Mon Wea Rev 132: 2293–2307. doi: 10.1175/1520-0493(2004)132,2293:AVLFDC.2.0.CO;2 CrossRefGoogle Scholar
  22. Liu Z, Alexander MA (2007) Atmospheric bridge, oceanic tunnel and global climatic teleconnections. Rev Geophys 45:RG2005. doi: 10.1029/2005RG000172 CrossRefGoogle Scholar
  23. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168. doi: 10.1175/JCLI-D-12-00236.1 CrossRefGoogle Scholar
  24. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophy Res-Atmos. doi: 10.1029/2002JD002670 Google Scholar
  25. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626CrossRefGoogle Scholar
  26. Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep 60:28. http://www-pcmdi.llnl.gov/publications/ab60.html.
  27. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski CW (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324CrossRefGoogle Scholar
  28. Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49:698–712CrossRefGoogle Scholar
  29. Wang C (2002) Atmospheric circulation cells associated with the El Nino Southern Oscillation. J Clim 15:399–419CrossRefGoogle Scholar
  30. Wang C, Weisberg RH (2000) The 1997-98 El Niño evolution relative to previous El Niño events. J Clim 13:488–501CrossRefGoogle Scholar
  31. Wang C, Weisberg RH, Virmani J (1999) Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J Geophys Res 104:5131–5149CrossRefGoogle Scholar
  32. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  33. Wang C, Wang W, Wang D, Wang Q (2006) Interannual variability of the South China Sea associated with El Niño. J Geophy Res 111: C03023, doi: 10.1029/2005JC003333 Google Scholar
  34. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510CrossRefGoogle Scholar
  35. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782CrossRefGoogle Scholar
  36. Wu R, Yeh SW (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res 115:D08101. doi: 10.1029/2009JD012999 Google Scholar
  37. Wu R, Hu Z-Z, Kirtman BP (2003) Evolution of ENSO related rainfall anomalies in East Asia. J Clim 16:3742–3758CrossRefGoogle Scholar
  38. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi: 10.1029/2007JD009316 Google Scholar
  39. Wu B, Li T, Zhou T-J (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacifc anomalous anticyclone during the El Niño Decaying Summer. J Clim 23:2974–2986CrossRefGoogle Scholar
  40. Wu R, Yang S, Wen Z, Huang G, Hu K (2012) Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor Appl Climatol 108:119–133. doi: 10.1007/s00704-011-0519-4 CrossRefGoogle Scholar
  41. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  42. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr 147:121–142Google Scholar
  43. Xie S-P, Zhou ZQ (2017) Seasonal modulations of El Niño-related atmospheric variability: Indo-western Pacific ocean feedback. J Clim. doi: 10.1175/JCLI-D-16-0713.1 Google Scholar
  44. Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:867–878CrossRefGoogle Scholar
  45. Xie S-P, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  46. Xie S-P, Kosaka Y, Du Y, Hu KM, Chowdary J, Huang G (2016) Indowestern Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. doi: 10.1007/s00376-015-5192-6 CrossRefGoogle Scholar
  47. Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi: 10.1029/2006GL028571 Google Scholar
  48. Yim SY, Yeh SW, Wu R, Jhun JG (2008) The Influence of ENSO on decadal variations in the relationship between the East Asian and Western North pacific summer monsoons. J Clim 21:3165–3179CrossRefGoogle Scholar
  49. Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, p 64Google Scholar
  50. Zhai P, Yu R, Guo Y, Li Q, Ren X, Wang Y, Xu W, Liu Y, Ding Y (2016) The strong El Niño in 2015/2016 and its dominant impacts on global and China’s climate. Acta Meteorol Sin (Chinese) 74:309–321. doi: 10.11676/qxxb2016.049 Google Scholar
  51. Zhan R, Wang Y, Lei X (2011) Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J Clim 24:509–521CrossRefGoogle Scholar
  52. Zhan R, Wang Y, Tao L (2014) Intensified Impact of East Indian Ocean SST Anomaly on tropical cyclone genesis frequency over the Western North Pacific. J Clim 27:8724–8739CrossRefGoogle Scholar
  53. Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ‘86/87 and ‘91/92 events. J Meteor Soc Jpn 74:49–62CrossRefGoogle Scholar
  54. Zhang R, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16:229–241CrossRefGoogle Scholar
  55. Zhu J, Kumar A, Huang B, Balmaseda MA, Hu Z-Z, Marx L, Kinter JL III (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep 6:19677. doi: 10.1038/srep19677 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  3. 3.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations