Climate Dynamics

, Volume 50, Issue 11–12, pp 4365–4377 | Cite as

North American wintertime temperature anomalies: the role of El Niño diversity and differential teleconnections

  • Mussie T. BeyeneEmail author
  • Shaleen Jain


El Niño–Southern Oscillation (ENSO) teleconnections induced wintertime surface air temperature (SAT) anomalies over North America show inter-event variability, asymmetry, and nonlinearity. This diagnostic study appraises the assumption that ENSO-induced teleconnections are adequately characterized as symmetric shifts in the SAT probability distributions for North American locations. To this end, a new conditional quantile functional estimation approach presented here incorporates: (a) the detailed nature of location and amplitude of SST anomalies—in particular the Eastern Pacific (EP), Central Pacific (CP) ENSO events—based on its two leading principal components, and (b) over the entire range of SATs, characterize the differential sensitivity to ENSO. Statistical significance is assessed using a wild bootstrap approach. Conditional risk at upper and lower quartile SAT conditioned on archetypical ENSO states is derived. There is marked asymmetry in ENSO effects on the likelihood of upper and lower quartile winter SATs for most North American regions. CP El Niño patterns show 20–80% decrease in the likelihood of lower quartile SATs for Canada and US west coast and a 20–40% increase across southeastern US. However, the upper quartile SAT for large swathes of Canada shows no sensitivity to CP El Niño. Similarly, EP El Niño is linked to a 40–80% increase in the probability of upper quartile winter SATs for Canada and northern US and a 20% decrease for southern US and northern Mexico regions; however, little or no change in the risk of lower quartile winter temperatures for southern parts of North America. Localized estimate of ENSO-related risk are also presented.



NCEP Reanalysis data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website at This study is supported by National Science Foundation Awards 0904155 and 1055934, and NOAA award NA14OAR4320158.

Supplementary material

382_2017_3880_MOESM1_ESM.docx (9.7 mb)
Supplementary material 1 (DOCX 9933 KB)


  1. Ashok K, Behera SK, Rao SA, Wen H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Clim 15(23):3427–3442. doi: 10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2 CrossRefGoogle Scholar
  3. Basu S, Zhang X, Polyakov I, Bhatt US (2013) North American winter-spring storms: modeling investigation on tropical Pacific sea surface temperature impacts. Geophys Res Lett 40:5228–5233. doi: 10.1002/grl.50990 CrossRefGoogle Scholar
  4. Beyene MT, Jain S (2015) Wintertime weather-climate variability and its links to early spring ice-out in Maine lakes. Limnol Oceanogr 60(6):1890–1905. doi: 10.1002/lno.10148 CrossRefGoogle Scholar
  5. Bondell HD, Reich BJ, Wang H (2010) Noncrossing quantile regression curve estimation. Biometrika 97(4):825–838. doi:  10.1093/biomet/asq048 CrossRefGoogle Scholar
  6. Cai W, Santoso A, Wang G, Yeh SW, An SI, Cobb KM, Collins M, Guilyardi E, Jin FF, Kug JS, Lengaigne M (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859. doi: 10.1038/nclimate2743 CrossRefGoogle Scholar
  7. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938. doi: 10.1175/BAMS-D-13-00117.1 CrossRefGoogle Scholar
  8. Chen WY, van den Dool HM (1997) Asymmetric impact of tropical SST anomalies on atmospheric internal variability over the North Pacific. J Atmos Sci 54(6):725–740CrossRefGoogle Scholar
  9. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi: 10.1038/ngeo2234 CrossRefGoogle Scholar
  10. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948–present. J Geophys Res Atmos 113:D01103. doi: 10.1029/2007JD008470 CrossRefGoogle Scholar
  11. Feng X, He X, Hu J (2011) Wild bootstrap for quantile regression. Biometrika 98(4):995–999. doi: 10.1093/biomet/asr052 CrossRefGoogle Scholar
  12. He X, Zhu LX (2003) A lack-of-fit test for quantile regression. J Am Stat Assoc 98:1013–1022CrossRefGoogle Scholar
  13. Hoerling MP, Kumar A (1997) Why do North American climate anomalies differ from one El Niño event to another? Geophys Res Lett 24(9):1059–1062. doi: 10.1029/97GL00918 CrossRefGoogle Scholar
  14. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786CrossRefGoogle Scholar
  15. Infanti JM, Ben P, Kirtman (2016) North American rainfall and temperature prediction response to the diversity of ENSO. Clim Dyn 46(9–10):3007–3023. doi: 10.1007/s00382-015-2749-0 CrossRefGoogle Scholar
  16. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  17. Koenker R (2016) quantreg: quantile regression. R package version 5.29. Accessed 10 Mar 2016
  18. Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica. doi: 10.2307/1913643 Google Scholar
  19. Koenker R, Hallock K (2001) Quantile regression: an introduction. J Econ Perspect 15(4):43–56CrossRefGoogle Scholar
  20. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  21. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32(13):L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  22. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111(1):46–59. doi: 10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2
  23. NOAA CPC/National Oceanic and Atmospheric Administration Climate Prediction Center (2016) Accessed 7 Dec 2016
  24. Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi: 10.1029/2010GL046031.35 CrossRefGoogle Scholar
  25. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:  10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  26. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38(10):L10704. doi: 10.1029/2011GL047364 CrossRefGoogle Scholar
  27. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14(8):1697–1701CrossRefGoogle Scholar
  28. Wiedermann M, Radebach A, Donges JF, Kurths J, Donner RV (2016) A climate network-based index to discriminate different types of El Niño and La Niña. Geophys Res Lett 43:7176–7185. doi: 10.1002/2016GL069119 CrossRefGoogle Scholar
  29. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  30. Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi: 10.1029/2012GL052483 CrossRefGoogle Scholar
  31. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025. doi: 10.1002/2013GL058964 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of MaineOronoUSA

Personalised recommendations