Climate Dynamics

, Volume 50, Issue 11–12, pp 4347–4364 | Cite as

Factors affecting the inter-annual to centennial timescale variability of Indian summer monsoon rainfall

Article

Abstract

The Modes of Ocean Variability (MOV) namely Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) can have significant impacts on Indian Summer Monsoon Rainfall (ISMR) on different timescales. The timescales at which these MOV interacts with ISMR and the factors which may perturb their relationship with ISMR need to be investigated. We employ De-trended Cross-Correlation Analysis (DCCA), and De-trended Partial-Cross-Correlation Analysis (DPCCA) to study the timescales of interaction of ISMR with AMO, PDO, and ENSO using observational dataset (AD 1854–1999), and atmosphere–ocean–chemistry climate model simulations with SOCOL-MPIOM (AD 1600–1999). Further, this study uses De-trended Semi-Partial Cross-Correlation Analysis (DSPCCA) to address the relation between solar variability and the ISMR. We find statistically significant evidence of intrinsic correlations of ISMR with AMO, PDO, and ENSO on different timescales, consistent between model simulations and observations. However, the model fails to capture modulation in intrinsic relationship between ISRM and MOV due to external signals. Our analysis indicates that AMO is a potential source of non-stationary relationship between ISMR and ENSO. Furthermore, the pattern of correlation between ISMR and Total Solar Irradiance (TSI) is inconsistent between observations and model simulations. The observational dataset indicates statistically insignificant negative intrinsic correlation between ISMR and TSI on decadal-to-centennial timescales. This statistically insignificant negative intrinsic correlation is transformed to statistically significant positive extrinsic by AMO on 61–86-year timescale. We propose a new mechanism for Sun–monsoon connection which operates through AMO by changes in summer (June–September; JJAS) meridional gradient of tropospheric temperatures (ΔTTJJAS). There is a negative (positive) intrinsic correlation between ΔTTJJAS (AMO) and TSI. The negative intrinsic correlation between ΔTTJJAS and TSI indicates that high (low) solar activity weakens (strengthens) the meridional gradient of tropospheric temperature during the summer monsoon season and subsequently the weak (strong) ΔTTJJAS decreases (increases) the ISMR. However, the presence of AMO transforms the negative intrinsic relation between ΔTTJJAS and TSI into positive extrinsic and strengthens the ISMR. We conclude that the positive relation between ISMR and solar activity, as found by other authors, is mainly due to the effect of AMO on ISMR.

Keywords

Atlantic multi-decadal oscillation Pacific decadal oscillation El Niño southern oscillation Solar activity Indian summer monsoon De-trended semi-partial-cross-correlation analysis 

Notes

Acknowledgements

We acknowledge support from the Federal Commission for Scholarships for Foreign Students for the Swiss Government Excellence Scholarship (ESKAS No. 2013.0516) for the academic year(s) 2013-16/17, SNF Project FUPSOL2 (CRSII2-147659), and the EC FP7 Project ERA-CLIM2: 607029. We are grateful to NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/) for providing ERSST dataset.

References

  1. Agnihotri R, Dutta K, Bhusan R, Somayajulu BLK (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet Sci Lett 198:521–527. doi: 10.1016/S0012-821X(02)00530-7 CrossRefGoogle Scholar
  2. Anet JG, Muthers S, Rozanov EV, Raible CC, Peter T, Stenke A, Shapiro AI, Beer J, Steinhilber F, Brönnimann S, Arfeuille FX, Brugnara Y, Schmutz W (2013a) Forcing of stratospheric chemistry and dynamics during the Dalton Minimum. Atmos Chem Phys 13:10951–10967. doi: 10.5194/acp-13-10951-2013 CrossRefGoogle Scholar
  3. Anet JG, Rozanov EV, Muthers S, Peter T, Brönnimann Stefan, Arfeuille FX, Beer J, Shapiro AI, Raible CC, Steinhilber F, Schmutz WK (2013b) Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys Res Lett. doi:  10.1002/grl.50806 Google Scholar
  4. Arfeuille F, Weisenstein D, Mack H, Rozanov E, Peter T, Brönnimann S (2014) Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Clim Past 10:359–375. doi: 10.5194/cp-10-359-2014 CrossRefGoogle Scholar
  5. Badruddin, Singh YP, Singh M (2006) Does solar variability affect Indian (Tropical) weather and climate?: an assessment. ILWS Workshop, GoaGoogle Scholar
  6. Berkelhammer M, Sinha A, Mudelsee M, Chang H, Edwards RL, Cannariato K (2010) Persistent multidecadal power of the Indian summer monsoon. Earth Planet Sci Lett 290:166–172. doi: 10.1016/j.epsl.2009.12.017 CrossRefGoogle Scholar
  7. Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Yoshimura K, Biswas J (2014) On the low-frequency component of the ENSO–Indian monsoon relationship: a paired proxy perspective. Clim Past 10:733–744. doi: 10.5194/cp-10-733-2014 CrossRefGoogle Scholar
  8. Brönnimann S, Annis JL, Vogler C, Jones PD (2007) Reconstructing the quasi-biennial oscillation back to the early 1900s. Geophys Res Lett. doi:  10.1029/2007GL031354 Google Scholar
  9. Burns SJ, Fleitmann D, Mudelsee M (2002) A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. J Geophys Res Atmos.doi:  10.1029/2001JD001281 Google Scholar
  10. Burns SJ, Fleitmann D, Matter A, Kramers J, Al-Subbary AA (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 288:847–850Google Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Quart J R Meteorol Soc 137:1–28. doi:  10.1002/qj.776 CrossRefGoogle Scholar
  12. D’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the atlantic multidecadal oscillation: might they be related?. doi: 10.1029/2007GL031584
  13. Dong K, Zhang H, Gao Y (2014) Modeling complex system correlation using detrended cross-correlation coefficient. Math Probl Eng. doi: 10.1155/2014/230537
  14. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US Geophys Res Lett 28:2077–2080. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  15. Feng S, Hu Q (2008) How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett. doi: 10.1029/2007GL032484 Google Scholar
  16. Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3.1–3.41. doi: 10.1029/2000RG000092 CrossRefGoogle Scholar
  17. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006)A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett. doi: 10.1029/2005GL024803 Google Scholar
  18. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357. doi: 10.1038/nature01340 CrossRefGoogle Scholar
  19. Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4): part I. upgrades and intercomparisons. J Clim 28:911–930. doi: 10.1175/JCLI-D-14-00006.1 CrossRefGoogle Scholar
  20. Huang B, Thorne P, Smith T, Liu W, Lawrimore J, Banzon V, Zhang H, Peterson T, Menne M (2016) Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J Clim 29:3119–3142. doi: 10.1175/JCLI-D-15-0430.1 CrossRefGoogle Scholar
  21. Kang IS, No HH, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical Central Pacific induced by Atlantic multidecadal oscillation. J Clim 27:7911–7920. doi:  10.1175/JCLI-D-14-00018.1 CrossRefGoogle Scholar
  22. Kim S (2015) ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22(6):665–674. doi: 10.5351/CSAM.2015.22.6.665 Google Scholar
  23. Knudsen MF, Jacobsen BH, Seidenkrantz MS, Olsen J (2014) Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat Commun. doi: 10.1038/ncomms4323 Google Scholar
  24. Kodera K (2004) Solar influence on the Indian Ocean monsoon through dynamical processes. Geophys Res Lett. doi: 10.1029/2004GL020928 Google Scholar
  25. Kodera K (2005) Possible solar modulation of the ENSO cycle. Pap Meteorol Geophys 55(1/2):21–32. doi: 10.2467/mripapers.55.21 CrossRefGoogle Scholar
  26. Krishnamurthy L, Krishnamurthy V (2013) Influence of PDO on South Asian summer monsoon–ENSO relation. Clim Dyn 42(9–10):2397–2410. doi:  10.1007/s00382-013-1856-z Google Scholar
  27. Krishnamurthy L, Krishnamurthy V (2014) Decadal scale oscillations and trend in the Indian monsoon rainfall. Clim Dyn 43:319–331. doi: 10.1007/s00382-013-1870-1 CrossRefGoogle Scholar
  28. Krishnamurthy L, Krishnamurthy V (2015) Teleconnection of Indian monsoon rainfall with AMO and Atlantic Tripole. Clim Dyn 46(7):2269–2285. doi: 10.1007/s00382-015-2701-3 Google Scholar
  29. Kristoufek L (2015) Measuring correlations between non-stationary series with DCCA coefficient. Phys A 402:291–298. doi: 10.1016/j.physa.2014.01.058 CrossRefGoogle Scholar
  30. Kugiumtzis D (2000) Surrogate data test on time series. In: Soofi A, Cao L (eds) Modeling and forecasting financial data. Springer, New York, pp 267–282Google Scholar
  31. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159. doi: 10.1126/science.284.5423.2156 CrossRefGoogle Scholar
  32. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119. doi: 10.1126/science.1131152 CrossRefGoogle Scholar
  33. Lapp SL, Jacques SJM, Elaine BM, David SJ (2012) GCM projections for the Pacific Decadal Oscillation under greenhouse forcing for the early 21st century. Int J Climatol 32(9):1423–1442. doi: 10.1002/joc.2364 CrossRefGoogle Scholar
  34. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198. doi: 10.1029/95GL03093 CrossRefGoogle Scholar
  35. Liu W, Huang B, Thorne PW, Banzon VF, Zhang HM, Freeman E, Lawrimore J, Peterson TC, Smith TM, Woodruff SD (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4): part II. parametric and structural uncertainty estimations. J Clim 28:931–951. doi: 10.1175/JCLI-D-14-00007.1 CrossRefGoogle Scholar
  36. Malik A, Brönnimann S, Stickler A, Raible CC, Muthers S, Anet J, Rozanov E, Schmutz W (2017a) Decadal to multidecadal scale variability of Indian summer monsoon rainfall in the coupled ocean–atmosphere-chemistry climate model SOCOL-MPIOM. Clim Dyn. doi: 10.1007/s00382-017-3529-9 Google Scholar
  37. Malik A, Brönnimann S, Perona P (2017b) Statistical link between external climate forcings and modes of ocean variability. Clim Dyn. doi: 10.1007/s00382-017-3832-5
  38. Mantua NJ, Hare ST (2002) The Pacific decadal oscillation. J Ocenogr 58(1):35–44. doi: 10.1023/A:1015820616384 CrossRefGoogle Scholar
  39. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  40. Meehl GA, Arblaster JM, Matthes K, Sassi F, Loon HV (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science. doi: 10.1126/science.1172872 Google Scholar
  41. Mehta VM, Lau WKM (1997) Influence of solar irradiance on the Indian monsoon–ENSO relationship at decadal–multidecadal time scales. Geophys Res Lett 24(2):159–162. doi:  10.1029/96GL03778 CrossRefGoogle Scholar
  42. Muthers S, Anet JG, Stenke A, Raible C, Rozanov E, Brönnimann S, Peter T, Arfeuille FX, Shapiro AI, Beer J, Steinhilber F, Brugnara Y, Schmutz W (2014) The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM. Geosci Model Dev 7(5):2157–2179. doi: 10.5194/gmd-7-2157-2014 CrossRefGoogle Scholar
  43. Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293. doi: 10.1038/35077048 CrossRefGoogle Scholar
  44. Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim 20:2333–2356. doi: 10.1175/JCLI4165.1 CrossRefGoogle Scholar
  45. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 CrossRefGoogle Scholar
  46. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi: 10.1038/ngeo955 CrossRefGoogle Scholar
  47. Polanski S, Fallah B, Prasad S, Cubasch U (2013) Simulation of the Indian monsoon and its variability during the last millenium. Clim Past Discuss 9:703–740. doi: 10.5194/cpd-9-703-2013 CrossRefGoogle Scholar
  48. Poli P, Hersbach H, Berrisford P, Dee DP, Simmons A, Laloyaux P (2015) ERA-20C deterministic. ERA report series 20, ECMWF. https://www.ecmwf.int/en/elibrary/11700-era-20c-deterministic. Accessed 31 Aug 2017
  49. Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut J-N, Trémolet Y, Bonavita M, Isaksen L, Fisher M, Hólm EV (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29:4083–4097. doi: 10.1175/JCLI-D-15-0556.1 CrossRefGoogle Scholar
  50. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton J, Ding Y, Griggs D et al (ed) IPCC third assessment report: climate change 2001. Cambridge University Press, Cambridge, pp 350–416Google Scholar
  51. Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783–787. doi: 10.1038/ngeo1586 CrossRefGoogle Scholar
  52. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese Ma (2015) GPCC full data reanalysis version 7.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V7_050
  53. Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S (2011) A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys. doi: 10.1051/0004-6361/201016173 Google Scholar
  54. Sontakke NA, Singh N, Singh HN (2008) Instrumental period rainfall series of the Indian region (1813–2005): revised reconstruction, update and analysis. Holocene 18(7):1055–1066. doi: 10.1177/0959683608095576 CrossRefGoogle Scholar
  55. Wei W, Lohmann G (2012) Simulated Atlantic multidecadal oscillation during the Holocene. J Clim 25(20):6989–7002. doi:  10.1175/JCLI-D-11-00667.1 CrossRefGoogle Scholar
  56. Wu S. Liu Z, Zhang R (2011) On the observed relationship between the Pacific decadal oscillation and the Atlantic multidecadal oscillation. J Oceanogr 67:27–35. doi:  10.1007/s10872-011-0003-x CrossRefGoogle Scholar
  57. Yadava MG, Ramesh R (2007) Significant longer-term periodicities in the proxy record of the Indian monsoon rainfall. New Astron 12(7):544–555. doi: 10.1016/j.newast.2007.04.001 CrossRefGoogle Scholar
  58. Yuan N, Fu Z, Zhang H, Piao L, Xoplaki E, Luterbacher J (2015) Detrended partial-cross-correlation analysis: a new method for analyzing correlations in complex system. Sci Rep. doi: 10.1038/srep08143 Google Scholar
  59. Zhang R, Delworth TL (2007) Impact of Atlantic multidecadal oscillation on north Pacific climate variability. Geophys Res Lett: doi: 10.1029/2007GL031601 Google Scholar
  60. Zhang WF, Zhao Q (2015) The quasi-periodicity of the annual-cycle forced ENSO recharge oscillator model. Commun Nonlinear Sci Numer Simul 22(1–3):472–477. doi: 10.1016/j.cnsns.2014.08.013 CrossRefGoogle Scholar
  61. Zhang X, Jin L, Jia W (2016) Centennial-scale teleconnection between North Atlantic sea surface temperatures and the Indian summer monsoon during the Holocene. Clim Dynam 46(9–10):3323–3336. doi: 10.1007/s00382-015-2771-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations