Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe

Abstract

The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970–2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land–atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves’ magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baldocchi D, Falge E, Gu L et al (2001) FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

  2. Ballester J, Rodó X, Giorgi F (2010) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi:10.1007/s00382-009-0641-5

    Article  Google Scholar 

  3. Barriopedro D, Fischer EM, Luterbacher J et al (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi:10.1126/science.1201224

    Article  Google Scholar 

  4. Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435. doi:10.5194/bg-11-3421-2014

    Article  Google Scholar 

  5. Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:4. doi:10.1029/2003GL018857

    Article  Google Scholar 

  6. Berg A, Lintner B, Findell K et al (2014) Impact of soil moisture–atmosphere interactions on surface temperature distribution. J Clim 27:7976–7993. doi:10.1175/JCLI-D-13-00591.1

    Article  Google Scholar 

  7. Blenkinsop S, Jones PD, Dorling SR, Osborn TJ (2009) Observed and modelled influence of atmospheric circulation on central England temperature extremes. Int J Climatol 29:1642–1660. doi:10.1002/joc.1807

    Article  Google Scholar 

  8. Davin EL, Maisonnave E, Seneviratne SI (2016) Is land surface processes representation a possible weak link in current Regional Climate Models? Environ Res Lett 11:74027. doi:10.1088/1748-9326/11/7/074027

    Article  Google Scholar 

  9. De Bono A, Giuliani G, Kluser S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID-Europe Environ Alert Bull 2:1–4

    Google Scholar 

  10. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  11. Della-Marta PM, Luterbacher J, Weissenfluh H et al (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275. doi:10.1007/s00382-007-0233-1

    Article  Google Scholar 

  12. Duchez A, Frajka-Williams E, Josey SA et al (2016) Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ Res Lett 11:74004. doi:10.1088/1748-9326/11/7/074004

    Article  Google Scholar 

  13. Fischer EM (2014) Climate science: Autopsy of two mega-heatwaves. Nat Geosci 7:332–333. doi:10.1038/ngeo2148

    Article  Google Scholar 

  14. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  15. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  16. Haarsma RJ, Selten F, van den Hurk B et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett 36:L04705. doi:10.1029/2008GL036617

    Article  Google Scholar 

  17. Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  18. Hoy A, Hänsel S, Skalak P et al (2016) The extreme European summer of 2015 in a long-term perspective. Int J Climatol. doi:10.1002/joc.4751

    Google Scholar 

  19. Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. doi:10.1007/s10113-013-0499-2

    Article  Google Scholar 

  20. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36:1919–1939. doi:10.1007/s00382-010-0780-8

    Article  Google Scholar 

  21. Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North Sea. Meteorological Office, Bracknell, Synoptic Climatology Branch Memorandum No. 62

  22. Jin J, Miller NL, Schlegel N (2010) Sensitivity Study of Four Land Surface Schemes in the WRF Model. Adv Meteorol 2010:1–11. doi:10.1155/2010/167436

    Google Scholar 

  23. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444. doi:10.1175/JCLI4066.1

    Article  Google Scholar 

  24. Kirtman B, Power SB, Adedoyin JA et al (2013) Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge

    Google Scholar 

  25. Konovalov IB, Beekmann M, Kuznetsova IN et al (2011) Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos Chem Phys 11:10031–10056. doi:10.5194/acp-11-10031-2011

    Article  Google Scholar 

  26. Kotlarski S, Keuler K, Christensen OB et al (2014) Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi:10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  27. Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Glob Planet Change 62:147–163. doi:10.1016/j.gloplacha.2008.01.003

    Article  Google Scholar 

  28. Kyselý J (2010) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Climatol 109:89–109. doi:10.1002/joc1874

    Google Scholar 

  29. Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27:3713–3730. doi:10.1175/JCLI-D-13-00284.1

    Article  Google Scholar 

  30. Lhotka O, Kyselý J (2015a) Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int J Climatol 35:1232–1244. doi:10.1002/joc.4050

    Article  Google Scholar 

  31. Lhotka O, Kyselý J (2015b) Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations. Clim Dyn 45:2351–2366. doi:10.1007/s00382-015-2475-7

    Article  Google Scholar 

  32. Lhotka O, Kyselý J, Farda A (2017) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol. doi:10.1007/s00704-016-2031-3

    Google Scholar 

  33. Michel C, Rivière G, Terray L, Joly B (2012) The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys Res Lett 39:6. doi:10.1029/2012GL051682

    Article  Google Scholar 

  34. Orth R, Zscheischler J, Seneviratne SI (2016) Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci Rep 6:28334. doi:10.1038/srep28334

    Article  Google Scholar 

  35. Plavcová E, Kyselý J (2012) Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Clim Dyn 39:1681–1695. doi:10.1007/s00382-011-1278-8

    Article  Google Scholar 

  36. Plavcová E, Kyselý J (2016) Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46:2805–2820. doi:10.1007/s00382-015-2733-8

    Article  Google Scholar 

  37. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi:10.1007/s00382-009-0607-7

    Article  Google Scholar 

  38. Robine J-M, Cheung SLK, Le Roy S et al (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178. doi:10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  39. Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the future. Environ Res Lett 10:124003. doi:10.1088/1748-9326/10/12/124003

    Article  Google Scholar 

  40. Scaife AA, Woollings T, Knight J et al (2010) Atmospheric Blocking and Mean Biases in Climate Models. J Clim 23:6143–6152. doi:10.1175/2010JCLI3728.1

    Article  Google Scholar 

  41. Schubert SD, Wang H, Koster R et al (2014) Northern Eurasian heat waves and droughts. J Clim 27:3169–3207. doi:10.1175/JCLI-D-13-00360.1

    Article  Google Scholar 

  42. Shaposhnikov D, Revich B, Bellander T et al (2014) Mortality related to air pollution with the moscow heat wave and wildfire of 2010. Epidemiology 25:359–364. doi:10.1097/EDE.0000000000000090

    Article  Google Scholar 

  43. Stéfanon M, Drobinski P, D’Andrea F et al (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi:10.1007/s00382-013-1794-9

    Article  Google Scholar 

  44. Stegehuis AI, Vautard R, Ciais P et al (2013) Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn 41:455–477. doi:10.1007/s00382-012-1559-x

    Article  Google Scholar 

  45. Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  46. Tomczyk AM, Bednorz E (2016) Heat waves in Central Europe and their circulation conditions. Int J Climatol 36:770–782. doi:10.1002/joc.4381

    Article  Google Scholar 

  47. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  48. Vautard R, Gobiet A, Jacob D et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Czech Science Foundation, project 16-22000S. O. Lhotka was supported also by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), Grant number LO1415. We acknowledge the WCRP WG on Regional Climate, and the WG on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. We also thank the climate modelling groups (listed in Table 1) for producing and making available their model output, and acknowledge the Earth System Grid Federation infrastructure led by the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP). The E-OBS data set was developed within the EU-FP6 ENSEMBLES project and is provided by the ECA&D project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ondřej Lhotka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14 KB)

Supplementary material 2 (PDF 24 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lhotka, O., Kyselý, J. & Plavcová, E. Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim Dyn 50, 4249–4262 (2018). https://doi.org/10.1007/s00382-017-3873-9

Download citation

Keywords

  • Heat waves
  • Regional climate models
  • CORDEX
  • Atmospheric circulation
  • Land–atmosphere interactions
  • Central Europe