Climate Dynamics

, Volume 50, Issue 11–12, pp 4171–4188 | Cite as

North Atlantic observations sharpen meridional overturning projections

  • R. Olson
  • S.-I. An
  • Y. Fan
  • J. P. Evans
  • L. Caesar
Article

Abstract

Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960–1999 and 2060–2099 of −4.0 Sv and −6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [−7.2, −1.2] and [−10.5, −3.7] Sv respectively for the two scenarios.

Keywords

Atlantic Meridional Overturning Circulation Climate modeling Bayesian Model Averaging Model structural error Probabilistic projections 

Notes

Acknowledgements

For their roles in producing, coordinating, and making available the CMIP5 model output, we acknowledge the climate modeling groups (listed in Table 1), the World Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (WGCM), and the Global Organization for Earth System Science Portals (GO-ESSP). Some data used here has been downloaded from the German Climate Computing Centre (DKRZ), with funding from the Federal Ministry for Education and Research. Jong-Soo Shin and Eun-Sook Heo provided technical assistance with downloading model output, and code debugging, respectively. Fruitful conversations with Stefan Rahmstorf and Axel Timmermann are gratefully acknowledged. S.-I. An and R. Olson were supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST, NRF-2009-0093069).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alley RB (2007) Wally was right: predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu Rev Earth Planet Sci 35:241–272. doi: 10.1146/annurev.earth.35.081006.131524 CrossRefGoogle Scholar
  2. Bakker P, Schmittner A, Lenaerts JTM et al (2016) Fate of the Atlantic Meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 2016GL070457. doi: 10.1002/2016GL070457 Google Scholar
  3. Bhat KS, Haran M, Terando A, Keller K (2011) Climate projections using Bayesian Model averaging and space-time dependence. J Agric Biol Environ Stat 16:606–628. doi: 10.1007/s13253-011-0069-3 CrossRefGoogle Scholar
  4. Bhat KS, Haran M, Olson R, Keller K (2012) Inferring likelihoods and climate system characteristics from climate models and multiple tracers. Environmetrics 23:345–362. doi: 10.1002/env.2149 CrossRefGoogle Scholar
  5. Böning CW, Behrens E, Biastoch A et al (2016) Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat Geosci 9:523–527. doi: 10.1038/ngeo2740 CrossRefGoogle Scholar
  6. Broecker WS (1997) Thermohaline circulation, the achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278:1582–1588. doi: 10.1126/science.278.5343.1582 CrossRefGoogle Scholar
  7. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657. doi: 10.1038/nature04385 CrossRefGoogle Scholar
  8. Bryden HL, King BA, McCarthy GD (2011) South Atlantic overturning circulation at 24°S. J Mar Res 69:39–56CrossRefGoogle Scholar
  9. Buckley MW, Marshall J (2016) Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev Geophys 54:2015RG000493. doi: 10.1002/2015RG000493 CrossRefGoogle Scholar
  10. Chang W, Haran M, Olson R, Keller K (2014) Fast dimension-reduced climate model calibration and the effect of data aggregation. Ann Appl Stat 8:649–673. doi: 10.1214/14-AOAS733 CrossRefGoogle Scholar
  11. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. doi: 10.1080/01621459.1979.10481038 CrossRefGoogle Scholar
  12. Cunningham SA, Kanzow T, Rayner D et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  13. Drews A, Greatbatch RJ (2016) Atlantic multidecadal variability in a model with an improved North Atlantic current. Geophys Res Lett 43:2016GL069815. doi: 10.1002/2016GL069815 CrossRefGoogle Scholar
  14. Drijfhout S, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the north Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379. doi: 10.1175/JCLI-D-12-00490.1 CrossRefGoogle Scholar
  15. Forest CE, Stone PH, Sokolov AP (2006) Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys Res Lett 33:L01705. doi: 10.1029/2005GL023977 CrossRefGoogle Scholar
  16. Gierz P, Lohmann G, Wei W (2015) Response of Atlantic overturning to future warming in a coupled atmosphere-ocean-ice sheet model. Geophys Res Lett 42:2015GL065276. doi: 10.1002/2015GL065276 CrossRefGoogle Scholar
  17. Goes M, Urban NM, Tonkonojenkov R et al (2010) What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic meridional overturning circulation? J Geophys Res Oceans. doi: 10.1029/2010JC006407 Google Scholar
  18. Gregory J (2012) CMIP5 Model Ancestry Info from Jonathan Gregory, University of Reading. http://cmip-pcmdi.llnl.gov/cmip5/errata/jgregory_cmip5ancestry.txt. Accessed 9 Feb 2017
  19. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi: 10.1029/2010RG000345 CrossRefGoogle Scholar
  20. Hawkins E, Smith RS, Allison LC et al (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38:L10605. doi: 10.1029/2011GL047208 Google Scholar
  21. Hirahara S, Ishii M, Fukuda Y (2013) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75. doi: 10.1175/JCLI-D-12-00837.1 CrossRefGoogle Scholar
  22. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–417CrossRefGoogle Scholar
  23. Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci 106:20584–20589. doi: 10.1073/pnas.0909146106 CrossRefGoogle Scholar
  24. Huang B, Banzon VF, Freeman E et al (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930. doi: 10.1175/JCLI-D-14-00006.1 CrossRefGoogle Scholar
  25. Huang B, Thorne PW, Smith TM et al (2015) Further Exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J Clim 29:3119–3142. doi: 10.1175/JCLI-D-15-0430.1 CrossRefGoogle Scholar
  26. Huisman SE, den Toom M, Dijkstra HA, Drijfhout S (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40:551–567. doi: 10.1175/2009JPO4215.1 CrossRefGoogle Scholar
  27. Kandiano ES, van der Meer MTJ, Bauch HA et al (2016) A cold and fresh ocean surface in the Nordic Seas during MIS 11: significance for the future ocean. Geophys Res Lett 43:2016GL070294. doi: 10.1002/2016GL070294 CrossRefGoogle Scholar
  28. Kanzow T, Cunningham SA, Johns WE et al (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi: 10.1175/2010JCLI3389.1 CrossRefGoogle Scholar
  29. Kim H, An S-I (2013) On the subarctic North Atlantic cooling due to global warming. Theor Appl Climatol 114:9–19. doi: 10.1007/s00704-012-0805-9 CrossRefGoogle Scholar
  30. Kuhlbrodt T, Griesel A, Montoya M et al (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. doi: 10.1029/2004RG000166 CrossRefGoogle Scholar
  31. Libardoni AG, Forest CE (2011) Sensitivity of distributions of climate system properties to the surface temperature dataset. Geophys Res Lett 38:L22705. doi: 10.1029/2011GL049431 CrossRefGoogle Scholar
  32. Liu W, Liu Z (2014) Assessing the stability of the Atlantic meridional overturning circulation of the past, present, and future. J Meteorol Res 28:803–819. doi: 10.1007/s13351-014-4006-6 CrossRefGoogle Scholar
  33. Liu W, Huang B, Thorne PW et al (2014) Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J Clim 28:931–951. doi: 10.1175/JCLI-D-14-00007.1 CrossRefGoogle Scholar
  34. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1:841–866. doi: 10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2 CrossRefGoogle Scholar
  35. Manabe S, Stouffer RJ (1993) Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature 364:215–218. doi: 10.1038/364215a0 CrossRefGoogle Scholar
  36. Mastrandrea MD, Field CB, Stocker TF et al (2010) Guidance note for lead authors of the IPCC Fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC)Google Scholar
  37. Meijers AJS (2014) The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos Trans R Soc Lond Math Phys Eng Sci 372:20130296. doi: 10.1098/rsta.2013.0296 CrossRefGoogle Scholar
  38. Montgomery JM, Nyhan B (2010) Bayesian model averaging: theoretical developments and practical applications. Polit Anal 18:245–270. doi: 10.1093/pan/mpq001 CrossRefGoogle Scholar
  39. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  40. NCAR (2017) Correct “branch_time”: information for all NCAR CMIP5 datasets. http://www.cesm.ucar.edu/CMIP5/errata/branch_times.html. Accessed 9 Feb 2017
  41. Negre C, Zahn R, Thomas AL et al (2010) Reversed flow of Atlantic deep water during the Last Glacial Maximum. Nature 468:84–88. doi: 10.1038/nature09508 CrossRefGoogle Scholar
  42. Olson R, Sriver R, Goes M et al (2012) A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model. J Geophys Res Atmosp 117:D04103. doi: 10.1029/2011JD016620 CrossRefGoogle Scholar
  43. Olson R, Fan Y, Evans JP (2016) A simple method for Bayesian model averaging of regional climate model projections: application to southeast Australian temperatures. Geophys Res Lett 43:2016GL069704. doi: 10.1002/2016GL069704 CrossRefGoogle Scholar
  44. Pawlowicz R (2013) Key physical variables in the ocean: temperature, salinity, and density. Nat Educ Knowl 4:1:13Google Scholar
  45. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133:1155–1174. doi: 10.1175/MWR2906.1 CrossRefGoogle Scholar
  46. Rahmstorf S, Crucifix M, Ganopolski A et al (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi: 10.1029/2005GL023655 CrossRefGoogle Scholar
  47. Rahmstorf S, Box JE, Feulner G et al (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480. doi: 10.1038/nclimate2554 CrossRefGoogle Scholar
  48. Reintges A, Martin T, Latif M, Keenlyside NS (2016) Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 modelsGoogle Scholar
  49. Schleussner C-F, Levermann A, Meinshausen M (2014) Probabilistic projections of the Atlantic overturning. Clim Change 127:579–586. doi: 10.1007/s10584-014-1265-2 CrossRefGoogle Scholar
  50. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:1–4. doi: 10.1029/2005GL024368 CrossRefGoogle Scholar
  51. Schmittner A, Urban NM, Keller K, Matthews D (2009) Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections. Glob Biogeochem Cycles 23:GB4009. doi: 10.1029/2008GB003421 Google Scholar
  52. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389. doi: 10.2307/2285891 CrossRefGoogle Scholar
  53. Sentman L (2016) ESMs CMIP5 FAQs. https://www.gfdl.noaa.gov/esms-cmip5-faqs/. Accessed 9 Feb 2017
  54. Sexton DMH, Murphy JM, Collins M, Webb MJ (2011) Multivariate probabilistic projections using imperfect climate models part I: outline of methodology. Clim Dyn 38:2513–2542. doi: 10.1007/s00382-011-1208-9 CrossRefGoogle Scholar
  55. Smeed DA, McCarthy GD, Cunningham SA et al (2014) Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci 10:29–38. doi: 10.5194/os-10-29-2014 CrossRefGoogle Scholar
  56. Srokosz M, Baringer M, Bryden H et al (2012) Past, present, and future changes in the Atlantic Meridional Overturning Circulation. Bull Am Meteorol Soc 93:1663–1676. doi: 10.1175/BAMS-D-11-00151.1 CrossRefGoogle Scholar
  57. Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388:862–865. doi: 10.1038/42224 CrossRefGoogle Scholar
  58. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230. doi: 10.1111/j.2153-3490.1961.tb00079.x CrossRefGoogle Scholar
  59. Stone EJ, Capron E, Lunt DJ et al (2016) Impact of meltwater on high-latitude early last interglacial climate. Clim Past 12:1919–1932. doi: 10.5194/cp-12-1919-2016 CrossRefGoogle Scholar
  60. Stouffer RJ, Yin J, Gregory JM et al (2006) Investigating the cause of the response of the thermohaline circulation to past and future climage changes. J Clim 19:1365–1387. doi: 10.1175/JCLI3689.1 CrossRefGoogle Scholar
  61. Terando A, Keller K, Easterling WE (2012) Probabilistic projections of agro-climate indices in North America. J Geophys Res Atmos. doi: 10.1029/2012JD017436 Google Scholar
  62. Timmermann A, Okumura Y, An S-I et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919. doi: 10.1175/JCLI4283.1 CrossRefGoogle Scholar
  63. Tomassini L, Reichert P, Knutti R et al (2007) Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods. J Clim 20:1239–1254. doi: 10.1175/JCLI4064.1 CrossRefGoogle Scholar
  64. Urban NM, Keller K (2010) Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model. Tellus A 62:737–750. doi: 10.1111/j.1600-0870.2010.00471.x CrossRefGoogle Scholar
  65. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267. doi: 10.1023/A:1016168827653 CrossRefGoogle Scholar
  66. Weaver AJ, Sedláček J, Eby M et al (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett 39:L20709. doi: 10.1029/2012GL053763 CrossRefGoogle Scholar
  67. Yeager S, Danabasoglu G (2014) The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J Clim 27:3222–3247. doi: 10.1175/JCLI-D-13-00125.1 CrossRefGoogle Scholar
  68. Zappa G, Masato G, Shaffrey L et al (2014) Linking Northern hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys Res Lett 41:135–139. doi: 10.1002/2013GL058480 CrossRefGoogle Scholar
  69. Zickfeld K, Levermann A, Morgan MG et al (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82:235–265. doi: 10.1007/s10584-007-9246-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulSouth Korea
  2. 2.School of Mathematics and StatisticsUNSWSydneyAustralia
  3. 3.Climate Change Research Centre, ARC Centre for Excellence in Climate System ScienceUNSWSydneyAustralia
  4. 4.Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationBerlinGermany
  5. 5.Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations