Climate Dynamics

, Volume 50, Issue 11–12, pp 4103–4126 | Cite as

The performance of RegCM4 over the Central America and Caribbean region using different cumulus parameterizations

  • Daniel Martínez-Castro
  • Alejandro Vichot-Llano
  • Arnoldo Bezanilla-Morlot
  • Abel Centella-Artola
  • Jayaka Campbell
  • Filippo Giorgi
  • Cecilia C. Viloria-Holguin


A sensitivity study of the performance of the RegCM4 regional climate model driven by the ERA Interim reanalysis is conducted for the Central America and Caribbean region. A set of numerical experiments are completed using four configurations of the model, with a horizontal grid spacing of 25 km for a period of 6 years (1998–2003), using three of the convective parameterization schemes implemented in the model, the Emanuel scheme, the Grell over land-Emanuel over ocean scheme and two configurations of the Tiedtke scheme. The objective of the study is to investigate the ability of each configuration to reproduce different characteristics of the temperature, circulation and precipitation fields for the dry and rainy seasons. All schemes simulate the general temperature and precipitation patterns over land reasonably well, with relatively high correlations compared to observation datasets, though in specific regions there are positive or negative biases, greater in the rainy season. We also focus on some circulation features relevant for the region, such as the Caribbean low level jet and sea breeze circulations over islands, which are simulated by the model with varied performance across the different configurations. We find that no model configuration assessed is best performing for all the analysis criteria selected, but the Tiedtke configurations, which include the capability of tuning in particular the exchanges between cloud and environment air, provide the most balanced range of biases across variables, with no outstanding systematic bias emerging.


Regional climate model Convective scheme Parameterization Sensitivity study RegCM4 



The Project “Generation of high resolution climate change scenarios for Cuba, the Caribbean region and the surrounding territories” of the Climate Change Program of the Cuban Environment Agency partially funded this work. Special thanks to the Caribbean Community Climate Change Centre for funding for storage capacity and to The Abdus Salam International Centre for Theoretical Physics (ICTP) for its financial support to access its facilities to four of the authors through its Associateship and Federation Programs. We thank the Weather and Climate Physics Group of ICTP for providing RegCM4 and for their support during our stays in ICTP. Thanks to our colleague Adrian Ferrer for helping in data processing.


  1. Adler R, Huffman G, Chang A, Ferraro R et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analyiss (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Aldrian E, Deumenil-Gates L, Jacob D, Podzun R, Gunawan D (2004) Long-term simulation of Indonesia rainfall with the MPI regional model. Clim Dyn 22:795–814CrossRefGoogle Scholar
  3. Alfonso AP, Naranjo LR (1996) The 13 March 1993 severe squall line over Western Cuba. Weather Forecast 11:89–102CrossRefGoogle Scholar
  4. Alfonso L, Martínez-Castro D, Perez CA (1998) Numerical simulations of tropical convective clouds over Cuba using a one-dimensional and time-dependent cloud model. Atmos Res 47–48:343–354CrossRefGoogle Scholar
  5. Ali S, Dan L, Fu CB, Yang Y (2015) Performance of convective parameterization schemes in Asia using RegCM: simulations in three typical regions for the period 1998–2002. Adv Atmos Sci 32(5):715–730. doi: 10.1007/s00376-014-4158-4 CrossRefGoogle Scholar
  6. Amador J (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5:91–102Google Scholar
  7. Amador JA, Magaña VO (1999) Dynamics of the Low Level Jet over the Caribbean Sea. Preprints 20th Conference in Tropical Meteorology. 10–15 January 1999, Dalllas, Texas, American Meteorological Society, 401 y 402Google Scholar
  8. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265 (Academic Press) Google Scholar
  9. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale enviroment. Part I J Atmos Sci 31:674–701CrossRefGoogle Scholar
  10. Bao Y (2013) Simulations of summer monsoon climate over East Asia with a regional climate model (RegCM) using Tiedtke convective parameterization scheme (CPS). Atmos Res 134:35–44CrossRefGoogle Scholar
  11. Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2010) Future climate of the Caribbean from a regional climate model. Int J Climatol 31(12):1866–1878. doi: 10.1002/joc.2200 CrossRefGoogle Scholar
  12. Carnesoltas M (2002) La brisa de Mar y Tierra. Conceptos fundamentales. Revista Cubana de Meteorología 9(1):43–72Google Scholar
  13. Centella-Artola A, Taylor MA, Bezanilla-Morlot A, Martínez-Castro D, Campbell J, Stephenson T, Vichot-Llano A (2015) Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model. Clim Dyn 44:1901–1918. doi: 10.1007/s00382-014-2272-8 CrossRefGoogle Scholar
  14. Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87(10):367–374CrossRefGoogle Scholar
  15. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van den Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, H́olm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  16. Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere–atmosphere transfer scheme(BATS) version 1eas coupled to the NCAR community climate model. TechRep, National Center for Atmospheric Research Tech. Note NCAR. TN-387 + SRT, NCAR, BoulderGoogle Scholar
  17. Diro GT, Rauscher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48. doi: 10.3354/cr01049 CrossRefGoogle Scholar
  18. Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E (2014) Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim Change 125:75–94CrossRefGoogle Scholar
  19. Elguindi N, Bi X, Giorgi F, Cozzini S, Giulani G (2011) RegCM version 4.3 User’s Guide. PWCG Abdus Salam ICTP, Trieste, p 62Google Scholar
  20. Emanuel K (1991) A scheme for representive cumulos convection in large scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  21. Francisco RV, Arget J, Giorgi F, Pal J, Bi X, Gutowski W (2006) Regional model simulation of summer rainfall over the Philippines: effect of choice of driving fields and ocean flux schemes. Theor Appl Climatol 86(1–4):215–227CrossRefGoogle Scholar
  22. Fuentes-Franco R, Coppola E, Giorgi F, Graef F, Pavía, EG (2014) Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Clim Dyn 42:629–647. doi: 10.1007/s00382-013-1686-z CrossRefGoogle Scholar
  23. Gianotti RL, Zhang D, Eltahir EA (2012) Assessment of the regional climate model version 3 over the Maritime continent using different cumulus parameterization and land surface schemes. J Climate 25(2):638–656. doi: 10.1175/jcli-d-11-00025.1 CrossRefGoogle Scholar
  24. Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX inititative. Annu Rev Environ Resour 40:467–490CrossRefGoogle Scholar
  25. Giorgi F, Mearns LO (1991) Approaches to regional climate change simulation: a review. Rev Geophys 29:191–221CrossRefGoogle Scholar
  26. Giorgi F, Shields C (1999) Test of precipitation parameterizations available in the latest version of the NCAR Regional Climate Model (RegCM) over the continental United States. J Geophys Res 104:6353–6375CrossRefGoogle Scholar
  27. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (RegCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  28. Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Development of a second generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  29. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level the CORDEX framework WMO. Bulletin 58:175–183Google Scholar
  30. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary test over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  31. Gregory D, Morcrette JJ, Jakob C, Beljaars CM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF intergrated forecasting system. Q J R Meteorol Soc 126:1685–1710CrossRefGoogle Scholar
  32. Grell GA (1993) Prognostic evaluation of assumptions by cumulus parameterization. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  33. Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn state/NCAR mesoscale model (MM5). NCAR Tech. Note, NCAR/TN-398 + STR, NCARGoogle Scholar
  34. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Update high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset Int. J Climatol 34(3):623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  35. Hidalgo HG, Durán-Quesada AM, Amador JA, Alfaro EJ (2015) The Caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-Americas sea: a proposed dynamical mechanism. Geografiska Annaler Ser A Phys Geogr 97:41–59CrossRefGoogle Scholar
  36. Holtslag A, De Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  37. Huffman G, Adler R, Bolvin DG et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  38. Jenkins GS, Kamga A, Garba A, Diedhiou A, Morris V, Joseph E (2002) Investigating the West African climate system using global-regional climate models. Bull Am Meteorol Soc 83:583–595CrossRefGoogle Scholar
  39. Jones C, Giorgi F, Ascar G (2011) The coordinated regional downscaling experiment CORDEX. An international downscaling link to CMIP5. CLIVAR Exchanges 56(16):34–40Google Scholar
  40. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. doi: 10.1007/s00382-011-1099-9 CrossRefGoogle Scholar
  41. Karmalkar AV, Taylor MA, Campbell J, Stephenson T, New M, Centella A, Bezanilla A, Charlery J (2012) A review of observed and projected changes in climate for the Islands in the caribbean. Atmósfera 26:283–309CrossRefGoogle Scholar
  42. Karnauskas KB, Giannini A, Busalachi J (2013) Simple mechanism for the climatological midsummer drought along the Pacific coast of Central America. Atmósfera 26(2):261–281CrossRefGoogle Scholar
  43. Kato H, Hirakushi H, Nishizawa K, Giorgi F (1999) Performance of NCAR RegCM in the simulation of June and January climates over eastern Asia and the highresolution effect of the model. J Geophys Res 104:6455–6476CrossRefGoogle Scholar
  44. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3). NCAR Technical Note NCAR/TN420 + STR. doi: 10.5065/D6FF3Q99
  45. Lecha LB, Paz LB (1994) El clima de Cuba. Editorial Academia, La Habana, p 186Google Scholar
  46. Li L, Wang B, Wang Y, Wan H (2007) Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv Atmos Sci 24(2):323–335CrossRefGoogle Scholar
  47. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a global land cover charateristics database and IGBP Discover from 1-km AVHRR Data. Int J Remote Sens 21:1303–1330CrossRefGoogle Scholar
  48. Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588CrossRefGoogle Scholar
  49. Martínez-Castro D, Alfonso L, Báez R, Jo I (2001) La influencia de los perfiles meteorológicos a escala local en la lluvia sobre Camagüey. Cuba Rev Bras Meteorol 16(1):67Google Scholar
  50. Martínez-Castro D, Porfirio da Rocha R, Bezanilla-Morlot A, Alvarez-Escudero L, Reyes JP, Silva-Vidal Y, Arrit RW (2006) Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean Region. Theor Appl Climatol 86(1–4):5–22CrossRefGoogle Scholar
  51. Martínez-Castro D, Vichot-Llano A, Bezanilla-Morlot A, Centella-Artola A, Campbell J, Viloria-Holguin C (2016) Performance of RegCM-4.3 over the Caribbean region using different configurations of the Tiedtke convective parameterization scheme. Rev Clim 16(2016):77–98. Accessed 1 Nov 2016
  52. Mitchel TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  53. Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF. TechMemo 206:41Google Scholar
  54. Pal JS et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi: 10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  55. Raju PVS, Bhatla R, Almazroui M, Assiri M (2015) Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM-4.3. Int J Climatol 35:4695–4706. doi: 10.1002/joc.4317 CrossRefGoogle Scholar
  56. Reynold RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Clim 7:929–948CrossRefGoogle Scholar
  57. Riehl H (1979) Climate and weather in the tropics. Academic Press, London, p 611Google Scholar
  58. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter 110:25–35Google Scholar
  59. Srinivasan J, Smith G (1996) The role of heat fluxes and moist static energy in tropical convergence zones. Mon Weather Rev 124:2089–2099CrossRefGoogle Scholar
  60. Stensrud D (2007) Parameterization Schemes. Key to understanding numerical weather prediction models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  62. Taylor MA, Alfaro E (2005) Climate of Central America and the Caribbean. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Berlin, pp 183–189CrossRefGoogle Scholar
  63. Taylor MA, Centella A, Charlery J, Bezanilla A, Campbell J, Borrajero I, Stephenson T, Nurmohamed R (2013) The precis Caribbean story: lessons and legacies. Bull Am Meteorol Soc 94:1065–1073CrossRefGoogle Scholar
  64. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Am Meteorol Soc 117:1779–1800Google Scholar
  65. Vichot-Llano A, Martínez-Castro D, Centella-Artola A, Bezanilla-Morlot A (2014) Sensibilidad al cambio de dominio y resolución de tres configuraciones del modelo climático regional RegCM 4.3 para la región de América Central y el Caribe. Rev Climatología 14:45–62. Accessed 1 Nov 2016
  66. Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422. doi: 10.1007/s00382-007-0243-z CrossRefGoogle Scholar
  67. Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon Weather Rev 135:567–585CrossRefGoogle Scholar
  68. Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2008) Features of the Caribbean low level jet. Int J Climatol 28:119–128. doi: 10.1002/joc.1510 CrossRefGoogle Scholar
  69. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model output. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  70. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and DATA. J Clim 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Daniel Martínez-Castro
    • 1
  • Alejandro Vichot-Llano
    • 1
  • Arnoldo Bezanilla-Morlot
    • 1
  • Abel Centella-Artola
    • 1
  • Jayaka Campbell
    • 2
  • Filippo Giorgi
    • 3
  • Cecilia C. Viloria-Holguin
    • 4
  1. 1.Instituto de MeteorologíaHavanaCuba
  2. 2.Department of PhysicsUniversity of the West IndiesMonaJamaica
  3. 3.Earth Physics SectionInternational Centre for Theoretical PhysicsTriesteItaly
  4. 4.Oficina Nacional de MeteorologíaSanto DomingoDominican Republic

Personalised recommendations