Climate Dynamics

, Volume 50, Issue 11–12, pp 3995–4017 | Cite as

Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes

  • C. Junquas
  • K. Takahashi
  • T. Condom
  • J.-C. Espinoza
  • S. Chavez
  • J.-E. Sicart
  • T. Lebel


In the tropical Andes, the identification of the present synoptic mechanisms associated with the diurnal cycle of precipitation and its interaction with orography is a key step to understand how the atmospheric circulation influences the patterns of precipitation variability on longer time-scales. In particular we aim to better understand the combination of the local and regional mechanisms controlling the diurnal cycle of summertime (DJF) precipitation in the Northern Central Andes (NCA) region of Southern Peru. A climatology of the diurnal cycle is obtained from 15 wet seasons (2000–2014) of 3-hourly TRMM-3B42 data (0.25° × 0.25°) and swath data from the TRMM-2A25 precipitation radar product (5 km × 5 km). The main findings are: (1) in the NCA region, the diurnal cycle shows a maximum precipitation occurring during the day (night) in the western (eastern) side of the Andes highlands, (2) in the valleys of the Cuzco region and in the Amazon slope of the Andes the maximum (minimum) precipitation occurs during the night (day). The WRF (Weather Research and Forecasting) regional atmospheric model is used to simulate the mean diurnal cycle in the NCA region for the same period at 27 km and 9 km horizontal grid spacing and 3-hourly output, and at 3 km only for the month of January 2010 in the Cuzco valleys. Sensitivity experiments were also performed to investigate the effect of the topography on the observed rainfall patterns. The model reproduces the main diurnal precipitation features. The main atmospheric processes identified are: (1) the presence of a regional-scale cyclonic circulation strengthening during the afternoon, (2) diurnal thermally driven circulations at local scale, including upslope (downslope) wind and moisture transport during the day (night), (3) channelization of the upslope moisture transport from the Amazon along the Apurimac valleys toward the western part of the cordillera.


Precipitation Diurnal cycle Central Andes WRF model Moisture flux Peru 



Comments and suggestions provided by five anonymous reviewers were very helpful in improving this paper. The first author C.J. was supported by a post-doc grant from the Institute of Research for the Development (IRD). This study was conducted within the IRD program LMI-GREATICE. This work used HPC-Linux-Cluster resources from Laboratorio de Dinámica de Fluidos Geofísicos Computacional at IGP (Grants 101-2014-FONDECYT, SPIRALES2012 IRD-IGP, Manglares IGP-IDRC, PP068 program). The authors also thank Ricardo Zubieta (IGP, Peru) for helping with Fig. 1d and Antoine Rabatel (IGE, France) for interesting discussions.


  1. Barrett BS, Garreaud R, Falvey M (2009) Effect of the Andes cordillera on precipitation from a midlatitude cold front. Mon Weather Rev 137:3092–3109CrossRefGoogle Scholar
  2. Barros AP, Kim G, Williams E, Nesbitt SW (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci 4:29–51CrossRefGoogle Scholar
  3. Barry RG (2008) Mountain Weather and Climate, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Biasutti M, Yuter SE, Burleyson CD, Sobel AH (2012) Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim dyn 39:239–258CrossRefGoogle Scholar
  5. Campetella C, Vera C (2002) The influence of the Andes mountains on the South American low-level flow. Geophys Res Lett 29:1826CrossRefGoogle Scholar
  6. Chavez SP, Takahashi K (2017) Orographic rainfall hotspots in the Andes–Amazon transition according to the TRMM precipitation radar and in situ data. Geophys Res Atmos. doi: 10.1002/2016JD026282 Google Scholar
  7. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  8. Condom T, Rau P, Espinoza JC (2011) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol Process 25:1924–1933CrossRefGoogle Scholar
  9. Doyle M, Barros V (2002) Midsummer low-level circulation and precipitation in subtropical south America and related sea surface temperature anomalies in the south Atlantic. J Clim 15:3394–3410CrossRefGoogle Scholar
  10. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  11. Egger J, Blacutt L, Ghezzi F, Heinrich R, Kolb P, Lämmlein S, Zaratti F (2005) Diurnal circulation of the Bolivian Altiplano. Part I: observations. Mon Weather Rev 133:911–924CrossRefGoogle Scholar
  12. Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, Oliveira ED, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594CrossRefGoogle Scholar
  13. Espinoza JC, Ronchail J, Lengaigne M, Quispe N, Silva Y, Bettolli ML, Avalos G, Llacza A (2013) Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim dyn 41:1983–2002CrossRefGoogle Scholar
  14. Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity and relations with large-scale atmospheric circulation. Water Resour Res 51:3459–3475CrossRefGoogle Scholar
  15. Falvey M, Garreaud RD (2005) Moisture variability over the South American Altiplano during the South American low level jet experiment (SALLJEX) observing season. J Geophys Res 110:D22105Google Scholar
  16. Favier V, Wagnon P, Chazarin JP, Maisincho L, Coudrain A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana glacier 15, Ecuadorian Andes. J Geophys Res Atmos 109(D18):15CrossRefGoogle Scholar
  17. Figueroa S, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584CrossRefGoogle Scholar
  18. Garreaud RD (1999) Multiscale analysis of the summertime precipitation over the central Andes. Mon Weather Rev 127:901–921CrossRefGoogle Scholar
  19. Garreaud R (2000a) Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon Weather Rev 128:3337–3346CrossRefGoogle Scholar
  20. Garreaud RD (2000b) Cold air incursions over subtropical and tropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2549CrossRefGoogle Scholar
  21. Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789CrossRefGoogle Scholar
  22. Garreaud RD, Wallace JM (1997) The diurnal march of convective cloudiness over the Americas. Mon Weather Rev 125:3157–3171CrossRefGoogle Scholar
  23. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22CrossRefGoogle Scholar
  24. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J Clim 15:1141–1158CrossRefGoogle Scholar
  25. Giovannettone JP, Barros AP (2008) A remote sensing survey of the role of landform on the organization of orographic precipitation in central and southern Mexico. J Hydrometeor 9:1267–1283CrossRefGoogle Scholar
  26. Giovannettone JP, Barros AP (2009) Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J Hydrometeor 10:167–182CrossRefGoogle Scholar
  27. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38.1–38.4CrossRefGoogle Scholar
  28. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  29. Houze RA (2012) Orographic effects on precipitating clouds. Rev Geophys 50(1)Google Scholar
  30. Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys 53:994–1021CrossRefGoogle Scholar
  31. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55CrossRefGoogle Scholar
  32. Hurley JV, Vuille M, Hardy DR, Burns SJ, Thompson LG (2015) Cold air incursions, δ18O variability, and monsoon dynamics associated with snow days at Quelccaya ice cap, Peru. J Geophys Res: Atmos 120(15):7467–7487Google Scholar
  33. Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteor Climatolog 51:300–316CrossRefGoogle Scholar
  34. Jiménez PA, González-Rouco JF, Montávez JP, García-Bustamante E, Navarro J, Dudhia J (2013) Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation. Clim Dyn 40:1643–1656CrossRefGoogle Scholar
  35. Jin X, Wu T, Li L (2013) The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim Dyn 41:977–994CrossRefGoogle Scholar
  36. Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2015) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn. doi: 10.1007/s00382-015-2814-8 Google Scholar
  37. Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21:2680–2696CrossRefGoogle Scholar
  38. Killeen TJ, Douglas M, Consiglio T, Jørgensen PM, Mejia J (2007) Dry spots and wet spots in the Andean hotspot. J Biogeogr 34:1357–1373CrossRefGoogle Scholar
  39. Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Ashcroft P (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982CrossRefGoogle Scholar
  40. Labraga J, Frumento O, Lopez M (2000) The atmospheric water vapor cycle in South America and the tropospheric circulation. J Clim 13:1899–1915CrossRefGoogle Scholar
  41. Lavado CWS, Ronchail J, Labat D, Espinoza JC, Guyot JL (2012) Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol Sci J 57:625–642CrossRefGoogle Scholar
  42. Lavado Casimiro WS, Silvestre E, Pulache W (2010) Tendencias en los extremos de lluvias cerca a la ciudad del Cusco y su relación con las inundaciones de Enero del 2010. Extreme rainfall trends around Cusco and its relationship with the floods in January. Revista Peruana Geo-Atmosférica 2:89–98Google Scholar
  43. Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005CrossRefGoogle Scholar
  44. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280CrossRefGoogle Scholar
  45. Mearns LO, Giorgi F, McDaniel L, Shields C (1995) Analysis of daily variability of precipitation in a nested regional climate model: comparison with observations and doubled CO2 results. Glob Planet Change 10:55–78CrossRefGoogle Scholar
  46. Mlawer EJ, Taubnam SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:663–682CrossRefGoogle Scholar
  47. Mölg T, Kaser G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J Geophys Res 116:D16101Google Scholar
  48. Mourre L, Condom T, Junquas C, Lebel T, Sicart JE, Figueroa R, Cochachin A (2016) Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol Earth Syst Sci 20:125–141CrossRefGoogle Scholar
  49. Negri AJ, Bell TL, Xu L (2002) Sampling of the diurnal cycle of precipitation using TRMM. J Atmos Ocean Technol 19:1333–1344CrossRefGoogle Scholar
  50. Neukom R, Rohrer M, Calanca P, Salzmann N, Huggel C, Acuña D, Morales MS (2015) Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environ Res Lett 10:084017CrossRefGoogle Scholar
  51. Ochoa A, Pineda L, Crespo P, Willems P (2014) Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru. Hydrol Earth Syst Sci 18:3179–3193CrossRefGoogle Scholar
  52. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor 9:857–861CrossRefGoogle Scholar
  53. Poveda G, Oscar JM, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvarez JF (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Weather Rev 133:228–240CrossRefGoogle Scholar
  54. Pulgar Vidal J (1946) Historia y Geografía del Perú. Las ocho regiones naturales del Perú. Fondo Editorial de la Universidad Nacional Mayor de San Marcos, Lima, p 256Google Scholar
  55. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102CrossRefGoogle Scholar
  56. Rasmussen KL, Chaplin MM, Zuluaga MD, Houze RA Jr (2016) Contribution of Extreme convective storms to rainfall in South America. J Hydrometeorol 17(1):353–367CrossRefGoogle Scholar
  57. Reuder J, Egger J (2006) Diurnal circulation of the South American Altiplano: observations in a valley and at a pass. Tellus A 58:254–262CrossRefGoogle Scholar
  58. Rodwell M, Hoskins B (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211CrossRefGoogle Scholar
  59. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:64571CrossRefGoogle Scholar
  60. Romatschke U, Houze RA (2010) Extreme summer convection in South America. J Clim 23:3761–3791CrossRefGoogle Scholar
  61. Salio P, Nicolini M, Saulo A (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107(D24):4816CrossRefGoogle Scholar
  62. Scheel MLM, Rohrer M, Huggel Ch, Santos Villar D, Silvestre E, Huffman GJ (2011) Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15:2649–2663CrossRefGoogle Scholar
  63. Schwerdtfeger W (1976) Climates of Central and South America. In: World survey of climatology, vol 12. Elsevier Science, New YorkGoogle Scholar
  64. Segura H. Espinoza JC, Junquas C, Takahashi K (2016) Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environ Res Lett 11:094016. doi: 10.1088/1748-9326/11/9/094016 CrossRefGoogle Scholar
  65. Seluchi ME, Saulo C, Nicolini M, Satyamurty P (2003) The northwestern Argentinean low: a study of two typical events. Mon Weather Rev 131:2361–2378CrossRefGoogle Scholar
  66. Sicart JE, Ribstein P, Chazarin JP, Berthier E (2002) Solid precipitation on a tropical glacier in Bolivia measured with an ultrasonic depth gauge. Water Resour Res 38(10):1189CrossRefGoogle Scholar
  67. Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the Tropical Zongo Glacier by application of a distributed energy balance model. J Geophys Res 116:D13105Google Scholar
  68. Sicart JE, Espinoza JC, Queno L, Medina M (2015) Radiative properties of clouds over a tropical Bolivian glacier: seasonal variations and relationship with regional atmospheric circulation. Int J Climatol. doi: 10.1002/joc.4540 Google Scholar
  69. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. Note NCAR/TN-475+ STR, NCAR Tech, Colorado. doi: 10.5065/D68S4MVH Google Scholar
  70. Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecast of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136:5097–5115CrossRefGoogle Scholar
  71. Trachte K, Rollenbeck R, Bendix J (2010a) Nocturnal convective cloud formation under clear-sky conditions at the eastern Andes of south Ecuador. J Geophys Res 115:D24203Google Scholar
  72. Trachte K, Nauss T, Bendix J (2010b) The impact of different terrain configurations on the formation and dynamics of katabatic flows: idealised case studies. Bound Layer Meteorol 134:307–325CrossRefGoogle Scholar
  73. Vera CS, Vigliarolo PK (2000) A diagnostic study of cold–air outbreaks over South America. Mon Weather Rev 128:3–24CrossRefGoogle Scholar
  74. Vera CS et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000CrossRefGoogle Scholar
  75. Vernekar AD, Kirtman BP, Fennessy MJ (2003) Low-level jets and their effects on the South American Summer climate as simulated by the NCEP Eta Model. J Clim 16:297–311CrossRefGoogle Scholar
  76. Viale M, Norte FA (2009) Strong cross-barrier flow under stable conditions producing intense winter orographic precipitation: a case study over the subtropical central Andes. Weather Forecast 24:1009–1031CrossRefGoogle Scholar
  77. Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109:599–610CrossRefGoogle Scholar
  78. Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348CrossRefGoogle Scholar
  79. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  80. Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, vol 92, 2nd edn. Academic press, 505 ppGoogle Scholar
  81. Weckwerth TM, Bennett LJ, Jay Miller L, Van Baelen J, Di Girolamo P, Blyth AM, Hertneky TJ (2014) An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon Weather Rev 142:2687–2708CrossRefGoogle Scholar
  82. Whiteman CD (2000) Mountain meteorology. Fundamentals and applications. Oxford University Press, OxfordGoogle Scholar
  83. Yorgun MS, Rood RB (2014) An Object-based approach for quantification of GCM biases of the simulation of orographic precipitation. Part I: idealized simulations. J Clim 27:9139–9154CrossRefGoogle Scholar
  84. Zängl G, Egger J (2005) Diurnal circulation of the Bolivian Altiplano. Part II: theoretical and model investigations. Mon Weather Rev 133:3624–3643CrossRefGoogle Scholar
  85. Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. In: Mountain weather research and forecasting. Springer, Netherlands, pp 35–119Google Scholar
  86. Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040CrossRefGoogle Scholar
  87. Zubieta R, Getirana ACV, Espinoza JC, Lavado W (2015) Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. J Hydrol 528:599–612. doi: 10.1016/j.jhydrol.2015.06.064 CrossRefGoogle Scholar
  88. Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot JL (2014) A comparative performance analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for hydrological applications over Andean–Amazon river basins. J Hydrometeor 15:581–592CrossRefGoogle Scholar
  89. Zuluaga MD, Houze RA Jr (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon Weather Rev 143:298–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. Junquas
    • 1
    • 2
  • K. Takahashi
    • 1
  • T. Condom
    • 2
  • J.-C. Espinoza
    • 1
  • S. Chavez
    • 1
  • J.-E. Sicart
    • 2
  • T. Lebel
    • 2
  1. 1.Subdirección de Ciencias de la Atmósfera e hidrósfera (SCAH)Instituto Geofísico del Perú (IGP)LimaPeru
  2. 2.Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGEGrenobleFrance

Personalised recommendations