Climate Dynamics

, Volume 50, Issue 9–10, pp 3799–3812 | Cite as

Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium

  • Fei Liu
  • Jinbao Li
  • Bin Wang
  • Jian Liu
  • Tim Li
  • Gang Huang
  • Zhiyuan Wang


Detection and attribution of El Niño-Southern Oscillation (ENSO) responses to radiative forcing perturbation are critical for predicting the future change of ENSO under global warming. One of such forcing perturbation is the volcanic eruption. Our understanding of the responses of ENSO system to explosive tropical volcanic eruptions remains controversial, and we know little about the responses to high-latitude eruptions. Here, we synthesize proxy-based ENSO reconstructions, to show that there exist an El Niño-like response to the Northern Hemisphere (NH) and tropical eruptions and a La Niña-like response to the Southern Hemisphere (SH) eruptions over the past millennium. Our climate model simulation results show good agreement with the proxy records. The simulation reveals that due to different meridional thermal contrasts, the westerly wind anomalies can be excited over the tropical Pacific to the south of, at, or to the north of the equator in the first boreal winter after the NH, tropical, or SH eruptions, respectively. Thus, the eastern-Pacific El Niño can develop and peak in the second winter after the NH and tropical eruptions via the Bjerknes feedback. The model simulation only shows a central-Pacific El Niño-like response to the SH eruptions. The reason is that the anticyclonic wind anomaly associated with the SH eruption-induced southeast Pacific cooling will excite westward current anomalies and prevent the development of eastern-Pacific El Niño-like anomaly. These divergent responses to eruptions at different latitudes and in different hemispheres underline the sensitivity of the ENSO system to the spatial structure of radiative disturbances in the atmosphere.


Divergent El Niño responses Northern Hemisphere volcanic eruptions Southern Hemisphere volcanic eruptions ENSO Tree ring Reconstruction 



We thank Christopher M. Colose and two anonymous reviewers for their valuable comments and helpful suggestions. F.L. acknowledges the support from the National Natural Science Foundation of China (41420104002), the China National 973 Project (2015CB453200), and the Natural Science Foundation of Jiangsu (2015CB453200). J.B.L. acknowledges the support from the Hong Kong Research Grants Council (Project No. 27300514). B.W. acknowledges the support from the National Science Foundation of the US (climate dynamics division Award No. AGS-1540783) and the Global Research Laboratory (GRL) Program of the National Research Foundation of Korea (Grant No. 2011-0021927). This paper is ESMC Contribution No. 173.


  1. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278CrossRefGoogle Scholar
  2. Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  3. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:11007CrossRefGoogle Scholar
  4. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  6. Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM (2009) A multiproxy index of the El Nino–Southern Oscillation, AD 1525–1982. J Geophys Res Atmos 114Google Scholar
  7. Capotondi A et al (2015) Understanding ENSO diversity. B Am Meteorol Soc 96:921–938CrossRefGoogle Scholar
  8. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196CrossRefGoogle Scholar
  9. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  10. Colose CM, LeGrande AN, Vuille M (2016) Hemispherically asymmetric volcanic forcing of tropical hydroclimate and water isotopologue variability during the last millennium. Earth Syst Dynam Discuss 2016:1–52. doi: 10.5194/esd-2016-19 CrossRefGoogle Scholar
  11. Cook E, D’Arrigo R, Anchukaitis K (2008) ENSO reconstructions from long tree-ring chronologies: Unifying the differences? Talk presented at a special workshop on “Reconciling ENSO Chronologies for the Past 500 Years”, held in Moorea. French Polynesia on April 2–3Google Scholar
  12. D’Arrigo R, Cook ER, Wilson RJ, Allan R, Mann ME (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32Google Scholar
  13. D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56CrossRefGoogle Scholar
  14. Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143CrossRefGoogle Scholar
  15. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022CrossRefGoogle Scholar
  16. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J Climate 26:2329–2352CrossRefGoogle Scholar
  17. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res Atmos. doi: 10.1029/2008JD010239 Google Scholar
  18. Guilyardi E et al (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. B Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  19. Handler P (1984) Possible association of stratospheric aerosols and El Nino type events. Geophys Res Lett 11:1121–1124CrossRefGoogle Scholar
  20. Haurwitz MW, Brier GW (1981) A critique of the superposed epoch analysis method: its application to solar-weather relations. Mon Weather Rev 109:2074–2079CrossRefGoogle Scholar
  21. Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. B Am Meteorol Soc 94:1339–1360CrossRefGoogle Scholar
  22. Kang SM, Held IM, Frierson DM, Zhao M (2008) The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J Clim 21:3521–3532CrossRefGoogle Scholar
  23. Li J et al (2011) Interdecadal modulation of El Niño amplitude during the past millennium. Nat Clim Change 1:114–118CrossRefGoogle Scholar
  24. Li J et al (2013) El Nino modulations over the past seven centuries. Nat Clim Change 3:822–826CrossRefGoogle Scholar
  25. Lim HG, Yeh SW, Kug JS, Park YG, Park JH, Park R, Song CK (2016) Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: results from the ERIK simulation. Clim Dyn 46:3725–3736CrossRefGoogle Scholar
  26. Liu F, Chai J, Wang B, Liu J, Zhang X, Wang Z (2016) Global monsoon precipitation responses to large volcanic eruptions. Sci Rep 6:24331. doi: 10.1038/srep24331 CrossRefGoogle Scholar
  27. Maher N, McGregor S, England MH, Gupta AS (2015) Effects of volcanism on tropical variability. Geophys Res Lett 42:6024–6033. doi: 10.1002/2015GL064751 CrossRefGoogle Scholar
  28. Mann ME, Gille E, Overpeck J, Gross W, Bradley RS, Keimig FT, Hughes MK (2000) Global temperature patterns in past centuries: an interactive presentation. Earth Interact 4:1–1CrossRefGoogle Scholar
  29. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18(3):447–456CrossRefGoogle Scholar
  30. McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on ENSO. J Clim 24:2178–2191CrossRefGoogle Scholar
  31. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. CliPa 6:1–17Google Scholar
  32. McPhaden MJ, Glantz MH (2007) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  33. Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38Google Scholar
  34. Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J Clim 26:5169–5182CrossRefGoogle Scholar
  35. Pausata FS, Chafik L, Caballero R, Battisti DS (2015) Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc Natl Acad Sci USA 112:13784–13788CrossRefGoogle Scholar
  36. Pausata FSR, Karamperidou C, Caballero R, Battisti DS (2016) ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions. Geophys Res Lett 43Google Scholar
  37. Predybaylo E, Stenchikov GL, Wittenberg AT, Zeng F (2017) Impacts of a Pinatubo-Size Volcanic Eruption on ENSO. Atmo J Geophys ResGoogle Scholar
  38. Rayner N et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos (1984–2012) 108:4407CrossRefGoogle Scholar
  39. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  40. Rosenbloom N, Otto-Bliesner B, Brady E, Lawrence P (2013) Simulating the mid-Pliocene warm period with the CCSM4 model. Geosci Model Dev 6:549–561CrossRefGoogle Scholar
  41. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53CrossRefGoogle Scholar
  42. Seager R, Zebiak SE, Cane MA (1988) A model of the tropical Pacific sea surface temperature climatology. J Geophys Res Atmos 93:1265–1280Google Scholar
  43. Self S, Rampino M, Zhao J, Katz M (1997) Volcanic aerosol perturbations and strong El Nino events: no general correlation. Geophys Res Lett 24:1247–1250CrossRefGoogle Scholar
  44. Sigl M et al (2015) Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 523:543–549. doi: 10.1038/nature14565 CrossRefGoogle Scholar
  45. Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. B Am Meteorol Soc 79:2137CrossRefGoogle Scholar
  46. Stevenson S, Otto-Bliesner B, Fasullo J, Brady E (2016) “El Niño Like” hydroclimate responses to last Millennium volcanic eruptions. J Clim 29:2907–2921CrossRefGoogle Scholar
  47. Stevenson S, Fasullo JT, Ottobliesner BL, Tomas RA, Gao C (2017) Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc Natl Acad Sci USA 114:1822CrossRefGoogle Scholar
  48. Toohey M, Krüger K, Niemeier U, Timmreck C (2011) The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. ACP 11:22443–22481Google Scholar
  49. Wilson R, Cook E, D’Arrigo R, Riedwyl N, Evans MN, Tudhope A, Allan R (2010) Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections. J Q Sci 25:62–78CrossRefGoogle Scholar
  50. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38Google Scholar
  51. Zanchettin D et al (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39:419–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fei Liu
    • 1
  • Jinbao Li
    • 2
  • Bin Wang
    • 3
  • Jian Liu
    • 4
  • Tim Li
    • 3
  • Gang Huang
    • 5
  • Zhiyuan Wang
    • 4
  1. 1.Earth System Modeling Center and Climate Dynamics Research CenterNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of GeographyUniversity of Hong KongPokfulamHong Kong
  3. 3.Department of Atmospheric Sciences and Atmosphere-Ocean Research CenterUniversity of Hawaii at ManoaHonoluluUSA
  4. 4.Key Laboratory of Virtual Geographic Environment of Ministry of Education, School of Geography ScienceNanjing Normal UniversityNanjingChina
  5. 5.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations