Climate Dynamics

, Volume 50, Issue 9–10, pp 3745–3755 | Cite as

Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions

  • Mee-Hyun Cho
  • Ah-Ryeon Yang
  • Eun-Hyuk Baek
  • Sarah M. Kang
  • Su-Jong Jeong
  • Jin Young Kim
  • Baek-Min Kim


This study investigates future changes in the Arctic region and vegetation-cloud feedbacks simulated using the National Center for Atmospheric Research Community Atmosphere Model Version 3 coupled with a mixed layer ocean model. Impacts of future greening of the Arctic region are tested using altered surface boundary conditions for hypothetical vegetation distributions: (1) grasslands poleward of 60°N replaced by boreal forests and (2) both grasslands and shrubs replaced by boreal forests. Surface energy budget analysis reveals that future greening induces a considerable surface warming effect locally and warming is largely driven by an increase in short wave radiation. Both upward and downward shortwave radiation contribute to positive surface warming: upward shortwave radiation decreases mainly due to the decreased surface albedo (a darker surface) and downward shortwave radiation increases due to reduced cloud cover. The contribution of downward shortwave radiation at surface due to cloud cover reduction is larger than the contribution from surface albedo alone. The increased roughness length also transported surface fluxes to upper layer more efficiently and induce more heating and dry lower atmosphere. A relatively smaller increase in water vapor compared to the large increase in low-level air temperature in the simulation reduces relative humidity and results in reduced cloud cover. Therefore, vegetation-cloud feedbacks induced from land cover change significantly amplify Arctic warming. In addition to previously suggested feedback mechanisms, we propose that the vegetation-cloud feedback should be considered as one of major components that will give rise to an additional positive feedback to Arctic amplification.


Arctic greening CAM3 Albedo Roughness Vegetation-cloud feedback 



This study was supported by KMIPA2015-2093 (PN17040) of the Korean government and ‘Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster (PE17130)’ project of the Korea Polar Research Institute. This study was funded by the Ministry of Oceans and Fisheries of the Republic of Korea under the government project, “Quantitative assessment for PM & BC to climate change and development of reduction technology for PM, BC from ships”. Sarah Kang was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. 2016R1A1A3A04005520). Su-Jong Jeong was supported by the internal research fund of the South University of Science and Technology of China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010). Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14(8), 1–20CrossRefGoogle Scholar
  3. Bonan GB (2008a) Ecological climatology: concepts and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Bonan GB (2008b) Forest and forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449CrossRefGoogle Scholar
  5. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718CrossRefGoogle Scholar
  6. Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16:1021. doi: 10.1029/2000GB001360 CrossRefGoogle Scholar
  7. Bunn AG, Goetz SJ, Kimball JS, Zhang K (2007) Northern high-latitude ecosystems respond to climate change. EOS 88(34):333–340CrossRefGoogle Scholar
  8. Carleton AM, Travis D, Arnold D, Brinegar R, Jelinski DE, Easterling DR (1994) Climatic-scale vegetation—cloud interactions during drought using satellite data. Int J Climatol 14(6):593–623CrossRefGoogle Scholar
  9. Chae YJ, Kang SM, Jeong S-J, Kim B-M, Frierson DMW (2015) Arctic greening can cause earlier seasonality of Arctic amplification. Geophys Res Lett. doi: 10.1002/2014GL061841 Google Scholar
  10. Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660CrossRefGoogle Scholar
  11. Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004). Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(4):L04501CrossRefGoogle Scholar
  12. Collins WD, Rasch PJ, Boville BA (2004) Description of the NCAR community atmosphere model (CAM 3.0). Technical note NCAR/TN-464 + STR. National Center for Atmospheric Research, BoulderGoogle Scholar
  13. Cubasch U, Waszkewitz J, Hegerl G, Perlwitz J (1995) Regional climate changes as simulated in time-slice experiments. Clim Change 31(2–4):273–304CrossRefGoogle Scholar
  14. Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiation characteristics. J Clim 9:1731–1764. doi: 10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2 CrossRefGoogle Scholar
  15. De Noblet-Ducoudré N et al (2012) Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Clim 25:3261–3281. doi: 10.1175/JCLI-D-11-00338.1 CrossRefGoogle Scholar
  16. Dickinson RE, Oleson KW, Bonan GB (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19:2302–2324CrossRefGoogle Scholar
  17. Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Betts RA (2000) Importance of vegetation feedbacks in doubled-CO2 climate experiments. J Geophys Res 105(D11):14841–14861CrossRefGoogle Scholar
  18. Foley JA (2005) Tipping points in the tundra. Science 310(5748):627–628CrossRefGoogle Scholar
  19. Foley JA, Kutzbach JEM, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene Epoch. Nature 371(6492):52–54CrossRefGoogle Scholar
  20. Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997) Physiological responses of a black spruce forest to weather. J Geophys Res 102(D24):28987–28996CrossRefGoogle Scholar
  21. Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279(5348):214–217CrossRefGoogle Scholar
  22. Graversen RG, Wang MH (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dynam 33:629643CrossRefGoogle Scholar
  23. Graversen RG, Mauritsen T, Tjernstrom M, Kallen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:5356CrossRefGoogle Scholar
  24. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL et al (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72(3):251–298CrossRefGoogle Scholar
  25. IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 151Google Scholar
  26. Jeong S-J, Ho C-H, Park T-W, Kim J, Levis S (2011a) Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Clim Dyn 37(3–4):821–833. doi: 10.1029/2007GL031447 CrossRefGoogle Scholar
  27. Jeong S-J, Ho C-H, Gim H-J, Brwon ME (2011b) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol 17:2385–2399. doi: 10.1111/j.1365-2486.2011.02397.x CrossRefGoogle Scholar
  28. Jeong J-H, Kug J-S, Kim B-M, Min S-K, Linderholm HW, Ho C-H, Rayner D, Chen D, Jun S-Y (2012) Greening in the circumpolar high-latitude may amplify warming in the growing season. Clim Dyn 28:1421–1431. doi: 10.1007/s00382-011-1142-x CrossRefGoogle Scholar
  29. Jeong J-H, Kug J-S, Linderholm HW, Chen D, Kim B-M, Jun S-Y (2014) Intensified Arctic warming under greenhouse warming by vegetation-atmosphere-sea ice interaction. Environ Res Lett 9(9):094007. doi: 10.1088/1748-9326/9/9/094007 CrossRefGoogle Scholar
  30. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48(4):551–579CrossRefGoogle Scholar
  31. Jun S-Y, Ho C-H, Jeong J-H, Choi Y-S, Kim B-M (2016) Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions. Tellus A 68:29130. doi: 10.3402/tellusa.v68.29130 CrossRefGoogle Scholar
  32. Kang SM, Kim BM, Frierson DM, Jeong SJ, Seo J, Chae Y (2015) Seasonal dependence of the effect of Arctic greening on tropical precipitation. J Clim 28(15):6086–6095CrossRefGoogle Scholar
  33. Lawrence, Mark G. (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc 86(2):225–233. doi: 10.1175/BAMS-86-2-225 CrossRefGoogle Scholar
  34. Lawrence DM, Slater AG, Tinas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 35(11):L11506. doi: 10.1029/2008GL033985 CrossRefGoogle Scholar
  35. Lee E, Barford CC, Kucharik CJ, Felzer BS, Foley JA (2011) Role of turbulent heat fluxes over land in the monsoon over East Asia. Int J Geosci 2(04):420CrossRefGoogle Scholar
  36. Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750CrossRefGoogle Scholar
  37. Levis S, Bonan G, Vertenstein M, Oleson K (2004) The community land model’s dynamic global vegetation model (CLM-DGVM): technical description and user’s guide. NCAR Tech. Note TN-459 + IA. National Center for Atmospheric Research, BoulderGoogle Scholar
  38. Macias-Fauria M, Forbes BC, Zetterberg P, Kumpula T (2012) Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat Clim Change 2(6):13–18Google Scholar
  39. Miller PA, Smith B (2012) Modelling tundra vegetation response to recent Arctic warming. Ambio 41:281–291. doi: 10.1007/s13280-012-0306-1 CrossRefGoogle Scholar
  40. Myers-Smith IH, Elmendorf SC, Beck PS, Wilmking M, Hallinger M, Blok D et al (2015) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5(9):887–891CrossRefGoogle Scholar
  41. Oleson KW, Dai Y, Bonan GB (2004) Technical description of the community land model (CLM). Technical Note NCAR/TN-461 + STR. National Center for Atmospheric Research, BoulderGoogle Scholar
  42. Palm SP, Strey ST, Spinhirne J, Markus T (2010) Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. J Geophys Res-Atmos 115:D21209CrossRefGoogle Scholar
  43. Park S, Bretherton CS, Rasch PJ (2014) Integrating cloud processes in the community atmosphere model, version 5. J Clim 27(18):6821–6856CrossRefGoogle Scholar
  44. Pearson RG, Phillips SJ, Loranty MM, Beck PS, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3(7):673–677CrossRefGoogle Scholar
  45. Pielke RA Sr et al (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850. doi: 10.1002/wcc.144 CrossRefGoogle Scholar
  46. Pinto E, Shin Y, Cowling SA, Jones CD (2009) Past, present and future vegetation-cloud feedbacks in the Amazon Basin. Clim Dyn 32(6):741–751CrossRefGoogle Scholar
  47. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geo Res Lett 26(23):3469–3472CrossRefGoogle Scholar
  48. Schweiger AJ, Key J (1994) Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud data set, 1983–1990. J Appl Meteor 33:948–963CrossRefGoogle Scholar
  49. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337CrossRefGoogle Scholar
  50. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Servational evidence of recent change in the northern high-latitude environment. Clim Change 46(1–2):159–207CrossRefGoogle Scholar
  51. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  52. Song H, Lin W, Lin Y, Wolf AB, Donner LJ, Del Genio AD et al (2014) Evaluation of Cloud Fraction Simulated by Seven SCMs against the ARM Observations at the SGP Site*. J Clim 27(17):6698–6719CrossRefGoogle Scholar
  53. Swann AL, Fung IY, Levis S, Bonan G, Doney S (2010) Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc Nat Acad Sci 107(4):1295–1300. doi: 10.1073/pnas.0913846107 CrossRefGoogle Scholar
  54. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12(4):686–702CrossRefGoogle Scholar
  55. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index, growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190CrossRefGoogle Scholar
  56. Vavrus S (2004) The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J Clim 17:603–615CrossRefGoogle Scholar
  57. Vavrus S, Waliser D (2008) An improved parameterization for simulating arctic cloud amount in the CCSM3 climate model. J Clim 21:5673–5687. doi: 10.1175/2008JCLI2299.1 CrossRefGoogle Scholar
  58. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic, San DiegoGoogle Scholar
  59. Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I: Desertification. Journal of climate, 6Google Scholar
  60. Yamashima R, Takata K, Matsumoto J, Yasunari T (2011). Numerical study of the impacts of land use/cover changes between 1700 and 1850 on the seasonal hydroclimate in monsoon Asia. J Meteorol Soc Jpn 89 A:291–298 doi: 10.2151/jmsj.2011-A19 CrossRefGoogle Scholar
  61. Zhou L, Tucker CH, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20069–20083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mee-Hyun Cho
    • 1
  • Ah-Ryeon Yang
    • 2
  • Eun-Hyuk Baek
    • 1
  • Sarah M. Kang
    • 3
  • Su-Jong Jeong
    • 4
  • Jin Young Kim
    • 5
  • Baek-Min Kim
    • 1
  1. 1.Division of Polar Climate ResearchKorea Polar Research InstituteIncheonKorea
  2. 2.Seoul Metropolitan Office of MeteorologySuwonKorea
  3. 3.School of Urban and Environmental EngineeringUNISTUlsanKorea
  4. 4.School of Environmental Science and EngineeringSouth University of Science and Technology of ChinaShenzhenKorea
  5. 5.Green City Technology InstituteKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations