Climate Dynamics

, Volume 50, Issue 9–10, pp 3699–3710 | Cite as

Extended-range prediction of South Atlantic convergence zone rainfall with calibrated CFSv2 reforecast

  • Fernando E. Hirata
  • Alice M. Grimm


During the 2010–2011 wet season in Brazil, widespread landslides triggered by heavy rainfall killed hundreds of people and displaced nearly 35,000. The extreme precipitation was associated with the formation of the South Atlantic convergence zone (SACZ). Even though the physical mechanisms behind the formation and persistence of subtropical convergence zones are still unclear, we demonstrate that early predictions of heavy rainfall in the SACZ region are possible. Precipitation rate hindcasts from the NCEP Climate Forecast System version 2 are calibrated with the aid of a gridded precipitation dataset. When the calibration was applied to the 2010–2011 events, the hindcasts were able to depict both active and break phases of the SACZ with up to 2 weeks in advance during a period of relatively weak intraseasonal variability associated with the Madden–Julian Oscillation (MJO).



This work was carried out with the support of the National Council for Scientific and Technological Development (CNPq-Brazil) Grant BJT 400547/2013-9, and with the aid of the Inter-American Institute for Global Change Research (IAI) Grant CRN3035, which is supported by the US National Science Foundation (Grant GEO-1128040).


  1. Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean–atmosphere feedback in the South Atlantic convergence zone. Geophys Res Lett 34:L18809. doi: 10.1029/2007GL030401 CrossRefGoogle Scholar
  2. Bauer P, Thorpe A, Brunet G (2015) A quiet revolution of numerical weather prediction. Nature 525:47–55. doi: 10.1038/nature14956 CrossRefGoogle Scholar
  3. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, relationships with intraseasonal to interannual activity, and extreme rainfall. J Clim 17:88–108CrossRefGoogle Scholar
  4. Chaves RR, Nobre P (2004) Interactions between sea surface temperatures over the South Atlantic ocean and the South Atlantic convergence zone. Geophys Res Lett 31:L03204. doi: 10.1029/2003GL018647 CrossRefGoogle Scholar
  5. Chen M, Shi W, Xie P, Silva VBS, Kousky VE, Wayne Higgins R, Janowiak JE (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. doi: 10.1029/2007JD009132 Google Scholar
  6. CLIMANALISE (2010) Boletim de monitoramento e análise climática. CPTEC-INPE. Accessed 30 November 2015Google Scholar
  7. CLIMANALISE (2011) Boletim de monitoramento e análise climática. CPTEC-INPE. Accessed 30 November 2015Google Scholar
  8. Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410CrossRefGoogle Scholar
  9. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi: 10.1175/2008JCLI2429.1 CrossRefGoogle Scholar
  10. Hirata FE, Grimm AM (2016) The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Clim Dyn 46:3041–3055. doi: 10.1007/s00382-015-2751-6 CrossRefGoogle Scholar
  11. Hopson TM, Webster PJ (2010) A 1–10 day ensemble forecast scheme for major river basins of Bangladesh: forecasting severe floods of 2003–07. J Hydrometeorol 11:618–641CrossRefGoogle Scholar
  12. Jones C, Gottschalck J, Carvalho LMV, Higgins W (2011) Influence of the Madden–Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. Mon Weather Rev 139:332–350. doi: 10.1175/2010MWR3512.1 CrossRefGoogle Scholar
  13. Kodama Y-M (1993) Large-scale common features of subtropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part II: Conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71:581–610CrossRefGoogle Scholar
  14. Kumar S, Dirmeyer PA, Kinter JL III (2014) Usefulness of ensemble forecasts from NCEP climate forecast system in sub-seasonal to intra-annual forecasting. Geophys Res Lett 41:3586–3593. doi: 10.1002/2014GL059586 CrossRefGoogle Scholar
  15. Lenters JD, Cook KH (1997) On the origin of the bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–677CrossRefGoogle Scholar
  16. Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891CrossRefGoogle Scholar
  17. Liu X, Yang S, Li Q, Kumar A, Weaver S, Liu S (2013) Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2. Clim Dyn 42:1487–1508. doi: 10.1007/s00382-013-1831-8 CrossRefGoogle Scholar
  18. Marengo JA, Alves LM (2012) Regional climates: The 2011 intense rainfall and floods in Rio de Janeiro. In: State of the climate in 2011. Bull Amer Meteor Soc, Vol 93(7), p S176Google Scholar
  19. Niznik MJ, Lintner B, Matthews A, Widlansky MJ (2015) The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence Zone in CMIP5 models. J Clim 28(8):3353–3373. doi: 10.1175/JCLI-D-14-00527.1 CrossRefGoogle Scholar
  20. Nobre P, de Almeida RAF, Malagutti M, Giarolla E (2012) Coupled ocean–atmosphere variations over the South Atlantic ocean. J Clim 25:6349–6358. doi: 10.1175/JCLI-D-11-00444.1 CrossRefGoogle Scholar
  21. Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291CrossRefGoogle Scholar
  22. Nogués-Paegle J, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128:837–850CrossRefGoogle Scholar
  23. Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic convergence zone. Mon Weather Rev 128:2947–2957CrossRefGoogle Scholar
  24. Robertson AW, Kumar A, Peña M, Vitart F (2015) Improving and promoting subseasonal to seasonal prediction. Bull. Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00139.1 Google Scholar
  25. Saha S et al (2014) The NCEP Climate forecast system version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  26. Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Déqué M, Ferranti L, Fucile E, Fuentes M, Hendon H, Hodgson J, Kang HS, Kumar A, Lin H, Liu G, Liu X, Malguzzi P, Mallas I, Manoussakis M, Mastrangelo D, MacLachlan C, McLean P, Minami A, Mladek R, Nakazawa T, Najm S, Nie Y, Rixen M, Robertson A, Ruti P, Sun C, Takaya Y, Tolstykh M, Venuti F, Waliser D, Woolnough S, Wu T, Won D, Xiao H, Zaripov R, Zhang L (2016) The sub-seasonal to seasonal prediction (S2S) project database. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-16-0017.1 (in press) Google Scholar
  27. Webster PJ, Jian J (2011) Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world. Philos Trans R Soc A. doi: 10.1098/rsta.2011.0160.Google Scholar
  28. Webster PJ, Toma VE, Kim H-M (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett 30:L04806. doi: 10.1029/2010GL046346 Google Scholar
  29. Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific convergence zone. Clim Dyn 36(3–4):561–578. doi: 10.1007/s00382-010-0871-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations