Skip to main content

Advertisement

Log in

Performance evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The study aims to evaluate the regional climate model (RegCM) over South Asian (SA) CORDEX domain to represent seasonal and sub-seasonal variability of Indian Summer Monsoon (ISM). The model’s ability is evaluated by conducting two sets of experiments using one-tier approach of coupling the RegCM with a simple mixed-layer slab ocean model (SOM) and the two-tier approach of prescribing sea surface temperature (SST) to RegCM. Two model experiments are initialized at 1st January 2000 for a period of 13 year continuous simulation at a spatial resolution of 50 km. It is found that, one-tier approach realistically represents the spatial distribution of precipitation with significant improvement noticed over central India (CI) and head Bay of Bengal (BoB) regions. In addition, it also fairly reproduced the observed mean meridional circulation response to the diabatic heating produced during ISM. Most importantly, in one-tier approach the model could able to represent the observed SST and precipitation (P) relationship with significant improvement in correlation and model response time. An important result is the representation of northwest-southeast tilt of precipitation anomalies during active/break phase of monsoon. Additionally, the lagged response of vertical profiles of specific humidity, omega, vorticity and divergence over CI with respect to peak rainfall anomaly (active phase) are relatively better represented in one-tier approach. In brief, coupling improves the performance of RegCM in simulating the space–time characteristics of monsoon ISO mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ajayamohan RS, Goswami BN (2003) Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Meteorol Atmos Phys 84:83–100. doi:10.1007/s00703-002-0576-4

  • Ajayamohan RS, Goswami BN (2007) Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J Atmos Sci 64:460–478. doi:10.1175/JAS3844.1

    Article  Google Scholar 

  • Befort DJ, Leckebusch GC, Cubasch U (2016) Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM. Clim Dyn 8:2635–2651

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12: 573–587. doi:10.1007/s003820050129

  • Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C (2007) A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO. Clim Dyn 28:441–460

  • Chen M, Wang W, Kumar A et al (2012) Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J Clim 25:3566–3582. doi:10.1175/JCLI-D-11-00318.1

    Article  Google Scholar 

  • Das SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and precipitation using RegCM3. Theor Appl Climatol 86:161–172

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Fu X, Wang B (2004) Different solutions of intraseasonal oscillation exist in atmosphere-ocean coupled model and atmosphere-only model. J Clim 17:1263–1271

    Article  Google Scholar 

  • Fu X, Wang B, Li T (2002) Impacts of air-sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon Weather Rev 130:2889–2904

    Article  Google Scholar 

  • Fu X, Wang B, Li T, McCreary JP (2003) Coupling between northward propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60:1733–1753

    Article  Google Scholar 

  • Fu X, Wang B, Waliser DE, Tao L (2007) Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64:157–174

    Article  Google Scholar 

  • Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV(139):101–118

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Wea Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

  • Goswami BN, Ajaya Mohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198. doi:10.1175/1520-0442(2001)014>2.0.CO;2

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett. doi:10.1029/2003GL017810

    Google Scholar 

  • Goswami BB, Deshpande M, Mukhopadhyay P et al (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn. doi:10.1007/s00382-014-2089-5

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377. doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2

    Article  Google Scholar 

  • Hayashi Y (1982) Space-time spectral analysis and its applications to atmospheric waves. J Meteorol Soc Jpn 60(1):156–171

    Article  Google Scholar 

  • Hazra A, Krishnamurthy V (2015) Space-time structure of diabatic heating in monsoon intraseasonal oscillation. J Clim 28:2234–2255

    Article  Google Scholar 

  • Hendon HH (2000) Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J Atmos Sci 57:3939–3952. doi:10.1175/1520-0469(2001)058>2.0.CO;2

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

  • Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32:L22705

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert SD, Waliser DE, Stern WF, Satyan V, Kitoh A, Meehl GA, Kanamitsu M, Galin VY, Kim JK, Sumi A, Wu G, Liu Y (2002) Intercomparision of the climatological variations of Asian Summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395

    Article  Google Scholar 

  • Kemball-Cook S, Fu X (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean mode. J Atmos Sci 59:1433–1453

    Article  Google Scholar 

  • Kemball-Cook S, Wang B (2001) Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J Clim 14:2923–2942

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420 + STR, p 152

  • Kim EJ, Hong SY (2010) Impact of air–sea interaction on East Asian summer monsoon climate in WRF. J Geophys Res 115:D19118

    Article  Google Scholar 

  • Klingaman NP, Inness PM, Weller H, Slingo JM (2008) The importance of high- frequency sea surface temperature variability to the intraseasonal oscillations of Indian monsoon rainfall. J Clim 21:6119–6140

    Article  Google Scholar 

  • Konar´e A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi:10.1029/2007JD009322

    Article  Google Scholar 

  • Krishnamurti TN, Bhalme HN (1976) Oscillations of a Monsoon system. Part I. Observational aspects. J Atmos Sci 33:1937–1954

    Article  Google Scholar 

  • Kumar A, Zhang L, Wang W (2013) Sea surface temperature-precipitation relationship in different reanalyses. Mon Weather Rev 141:1118–1123

    Article  Google Scholar 

  • Lau NC, Nath MJ (2004) Coupled GCM simulation of atmosphere-ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265

    Article  Google Scholar 

  • Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27(3):1271–1289

  • Maharana P, Dimri AP (2015) Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Clim Dyn. doi:10.1007/s00382-015-2631-0

  • Oleson KW, NiuGy, Yang ZL, Lawrence DM et al (2008) Improvements to the community land model and their impact on the hydrologic cycle. J Geophys Res 113:G01021. doi:10.1029/2007JD000563

    Article  Google Scholar 

  • Paeth H, Born K, Podzun R, Jacob D (2005) Regional dynamical downscaling over West Africa: model evaluation and comparison of wet and dry years. Meteorol Z 14(3):349–367

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: representation of sub-grid cloud and precipitation processes within RegCM4. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F, Bell J, Diffenbaugh N, Karmacharya J, Konare A, Martinez-Castro D, Porfirio da Rocha R, Sloan L, Steiner A (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Poan ED, Gachon P, Dueymes G, Diaconesu E, Laprise R, Sanda I (2016) West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges. Clim Dyn. doi:10.1007/s00382-016-3016-8

    Google Scholar 

  • Rajendran K, Kitoh A, Arakawa O (2004) Monsoon low-frequency intraseasonal oscillation and ocean–atmosphere coupling over the Indian Ocean. Geophys Res Lett. doi:10.1029/2003GL019031

    Google Scholar 

  • Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2008) Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim Dyn. doi:10.1007/s00382-008-0433-3

  • Ratnam JV, Behera S, Masumoto Y, Takahashi K, Yamagata T (2012) A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Clim Dyn 39:2207–2217. doi:10.1007/s00382-011-1190-2

  • Sikka DR, Gadgil S (1980) On the Maximum Cloud Zone and the ITCZ over Indian, Longitudes during the Southwest Monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Singh GP, Oh JH (2007) Impact of Indian Ocean sea surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465. doi:10.1002/joc.1485

    Article  Google Scholar 

  • Slingo JM, Annamalai H (2000) 1997: the El Nino of the century and the response of the Indian Summer Monsoon. Mon Wea Rev 128:1778–1797

    Article  Google Scholar 

  • Slingo JM, Sperber KR, Boyle JS, Ceron JP, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy JF, Hack J, Harzallah A, Inness P, Kitoh A, Lau WKM, McAvaney B, Madden R, Matthews A, Palmer TN, Park CK, Randall D, Renno N (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357

  • Solmon F, Nair VS, Mallet M (2015) Increasing arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15:8051–8064

    Article  Google Scholar 

  • Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R, Kitoh A, Kobayashi C, Palmer T, Puri K, Tennant W, Volodin E (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn. doi:10.1007/s00382-009-0543-6

  • Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2010) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30:1865–1883. doi:10.1002/joc.2029

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geo Res 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Teng H, Wang B (2003) Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J Clim 16:3572–3584

    Article  Google Scholar 

  • Umakanth U, Kesarkar AP, Rao TN, Rao S (2014) An objective criterion for the identification of breaks in Indian summer monsoon precipitation. Atmos Sci Lett 16(3):193–198. doi:10.1002/asl2.536

    Google Scholar 

  • Umakanth U, Kesarkar AP, Raju A, Rao S (2015) Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics. Clim Dyn. doi:10.1007/s00382-015-2878-5

  • Vernekar AD, Ji Y (1999) Simulation of the onset and intraseasonal variability of two contrasting summer monsoons. J Clim 12(6):1707–1725. doi:10.1175/1520-0442(1999)012<1707:sotoai>2.0.co;2

    Article  Google Scholar 

  • Waliser DE (2006) Intraseasonal variability. In: Wang B (ed) The Asian Monsoon, First. Springer Praxis books, pp 203–257

  • Waliser DE, Lau KM, Kim JH (1999) The influence of coupled sea surface temperatures on the Madden–Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358

    Article  Google Scholar 

  • Waliser DE et al (2003a) AGCM Simulations of Intraseasonal Variability Associated with the Asian Summer Monsoon. Clim Dyn 21:423–446

  • Waliser DE, Stern W, Schubert S, Lau KM (2003b) Dynamic Predictability of Intraseasonal Variability Associated with the Asian Summer Monsoon. Quart J R Meteorol Soc 129:2897–2925

  • Wang B (2005) Theory. Intraseasonal variability in the atmosphere-ocean climate system. Springer-Praxis, Berlin, pp 307–351

  • Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL02273410.1029

    Article  Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res 103:14451. doi:10.1029/97JC02719

    Article  Google Scholar 

  • Wu X, Liang X, Zhang GJ (2003) Seasonal migration of ITCZ precipitation across the equator: why can’t GCMs simulate it. Geophys Res Lett. doi:10.1029/2003GL017198

    Google Scholar 

  • Wu R, Kirtman BP, Pegion K (2008) Local rainfall-SST relationship on subseasonal time scales in satellite observations and CFS. Geophys Res Lett. doi:10.1029/2008GL035883

    Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Q J R Meteorol Soc 133:749–764. doi:10.1002/qj.45

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J (1973) Determination of the bulk properties of tropical cloud clusters from large heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yasunari T (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Meteorol Soc Japan 57:227–242

  • Zou L, Zhou T, Peng D (2016) Dynamical downscaling of historical climate over CORDEX East Asia domain: a comparison of regional ocean atmosphere coupled model to standalone RCM simulations. J Geophy Res Atmos 121:1442–1458. doi:10.1002/2015JD023912

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable comments that helped us to improve the manuscript. The authors are thankful to Director, National Atmospheric Research Laboratory (NARL) for providing necessary facilities to carry out this work. We thankfully acknowledge ICTP for providing the regional climate model RegCM4.4. We wish to thank GPCP, ERA-Interim and OISST data products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Umakanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umakanth, U., Kesarkar, A.P. Performance evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon. Clim Dyn 50, 3595–3612 (2018). https://doi.org/10.1007/s00382-017-3827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3827-2

Keywords

Navigation