Climate Dynamics

, Volume 50, Issue 9–10, pp 3505–3522 | Cite as

Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model

  • Fuxing WangEmail author
  • Agnès Ducharne
  • Frédérique Cheruy
  • Min-Hui Lo
  • Jean-Yves Grandpeix


The main objective of the present work is to study the impacts of water table depth on the near surface climate and the physical mechanisms responsible for these impacts through the analysis of land–atmosphere coupled numerical simulations. The analysis is performed with the LMDZ (standard physics) and ORCHIDEE models, which are the atmosphere-land components of the Institut Pierre Simon Laplace (IPSL) Climate Model. The results of sensitivity experiments with groundwater tables (WT) prescribed at depths of 1 m (WTD1) and 2 m (WTD2) are compared to the results of a reference simulation with free drainage from an unsaturated 2 m soil (REF). The response of the atmosphere to the prescribed WT is mostly concentrated over land, and the largest differences in precipitation and evaporation are found between REF and WTD1. Saturating the bottom half of the soil in WTD1 induces a systematic increase of soil moisture across the continents. Evapotranspiration (ET) increases over water-limited regimes due to increased soil moisture, but it decreases over energy-limited regimes due to the decrease in downwelling radiation and the increase in cloud cover. The tropical (25°S–25°N) and mid-latitude areas (25°N–60°N and 25°S–60°S) are significantly impacted by the WT, showing a decrease in air temperature (−0.5 K over mid-latitudes and −1 K over tropics) and an increase in precipitation. The latter can be explained by more vigorous updrafts due to an increased meridional temperature gradient between the equator and higher latitudes, which transports more water vapour upward, causing a positive precipitation change in the ascending branch. Over the West African Monsoon and Australian Monsoon regions, the precipitation changes in both intensity (increases) and location (poleward). The more intense convection and the change of the large-scale dynamics are responsible for this change. Transition zones, such as the Mediterranean area and central North America, are also impacted, with strengthened convection resulting from increased ET.


Groundwater table Land–atmosphere Near surface climate IPSL-CM West African Monsoon 



The authors sincerely thank two anonymous reviewers for their insightful comments. They gratefully acknowledge the financial support provided by the IGEM project ‘Impact of Groundwater in Earth system Models’, co-funded by the French Agence Nationale de la Recherche (ANR Grant no. ANR-14-CE01-0018-01) and the Taiwanese Ministry of Science and Technology (MoST). The IDRIS computational facilities (Institut du Développement et des Ressources en Informatique Scientifique, CNRS, France) were used to perform all the IPSL-CM simulations.

Supplementary material

382_2017_3820_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4404 KB)


  1. Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A (2008) Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J Geophys Res 113:D07103. doi: 10.1029/2007JD009087 CrossRefGoogle Scholar
  2. Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI, van den Hurk B, Lorenz R, Pitman A, Hagemann S, Meier A, Cheruy F, Ducharne A, Malyshev S, Milly PCD (2016) Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat Clim Change 6:869–874. doi: 10.1038/nclimate3029 CrossRefGoogle Scholar
  3. Betts AK (2007) Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J Geophys Res 112:D10108. doi: 10.1029/2006JD008191 CrossRefGoogle Scholar
  4. Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702. doi: 10.1029/2007GL032417 CrossRefGoogle Scholar
  5. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using toga coare data. J Atmos Sci 58:3158–3318CrossRefGoogle Scholar
  6. Boucher O, Myhre G, Myhre A (2004) Direct influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603. doi: 10.1007/ss00382-004-0402-4 CrossRefGoogle Scholar
  7. Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) Howwell do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3–4):803–817. doi: 10.1007/s00382-013-1742-8 CrossRefGoogle Scholar
  8. Burkey J (2006) A non-parametric monotonic trend test computing Mann–Kendall Tau, Tau-b, and Sens Slope written in Mathworks-MATLAB implemented using matrix rotations. King County, Department of Natural Resources and Parks, Science and Technical Services section. Seattle. Washington. USA. Accessed Nov 2015
  9. Campoy A, Ducharne A, Cheruy F, Hourdin F, Polcher J, Dupont JC (2013) Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J Geophys Res 118:10725–10739. doi: 10.1002/jgrd.50627 Google Scholar
  10. Carsel R, Parrish R (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769. doi: 10.1029/WR024i005p00755 CrossRefGoogle Scholar
  11. Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269. doi: 10.1007/s00382-012-1469-y CrossRefGoogle Scholar
  12. Cheruy F, Dufresne JL, Hourdin F, Ducharne A (2014) Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys Res Lett 41:6493–6500. doi: 10.1002/2014GL061145 CrossRefGoogle Scholar
  13. d’Orgeval T, Polcher J, de Rosnay P (2008) Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol Earth Syst Sci 12:1387–1401. doi: 10.5194/hess-12-1387-2008 CrossRefGoogle Scholar
  14. De Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes. J Geophys Res 107:D11. doi: 10.1029/2001JD000634 CrossRefGoogle Scholar
  15. De Angelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. doi: 10.1029/2010JD013892 CrossRefGoogle Scholar
  16. Dirmeyer PA (2011) The terrestrial segment of soil moisture–climate coupling. Geophys Res Lett 38:L16702. doi: 10.1029/2011GL048268 CrossRefGoogle Scholar
  17. Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Trends in land–atmosphere interactions from CMIP5 simulations. J Hydrometeorol 14:829–849. doi: 10.1175/JHM-D-12-0107.1 CrossRefGoogle Scholar
  18. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi: 10.1088/1748-9326/4/3/035006 CrossRefGoogle Scholar
  19. Ducharne A, Laval K (2000) Influence of the realistic description of soil-holding capacity on the global water cycle in a GCM. J Clim 13(24):4393–4413CrossRefGoogle Scholar
  20. Ducharne A, Koster RD, Suarez MJ, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J Geophys Res 105(D20):24823–24838. doi: 10.1029/2000JD900328 CrossRefGoogle Scholar
  21. Dufresne J, Foujols M, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  22. Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329CrossRefGoogle Scholar
  23. Fan Y, Miguez-Macho G, Weaver CP, Walko R, Robock A (2007) Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J Geophys Res 112:D10125. doi: 10.1029/2006JD008111 CrossRefGoogle Scholar
  24. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943. doi: 10.1126/science.1229881 CrossRefGoogle Scholar
  25. Forster PM, Richardson T, Maycock AC, Smith CJ, Samset BH, Myhre G, Andrews T, Pincus R, Schulz M (2016) Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J Geophys Res Atmos 121:12460–12475. doi: 10.1002/2016JD025320.CrossRefGoogle Scholar
  26. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Contrib Atmos Phys 53:35–62Google Scholar
  27. Gaetani M, Flamant C, Bastin S, Janicot S, Lavaysse C, Hourdin F, Braconnot P, Bony S (2017) West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealised simulations. Clim Dyn. doi: 10.1007/s00382-016-3146-z Google Scholar
  28. Gastineau G, Le Treut H, LI L (2008) Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus A 60:863–884. doi: 10.1111/j.1600-0870.2008.00344.x CrossRefGoogle Scholar
  29. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348. doi: 10.1007/s00382-011-1252-5 CrossRefGoogle Scholar
  30. Guo ZC et al (2006) GLACE: the global land-atmosphere coupling experiment. Part II: Analysis. J Hydrometeorol 7:611–625. doi: 10.1175/JHM511.1 CrossRefGoogle Scholar
  31. Habets F, Boé J, Déqué M, Ducharne A, Gascoin S, Hachour A, Martin E, Pagé C, Sauquet E, Terray L, Thiéry D, Oudin L, Viennot P (2013) Impact of climate change on surface water and ground water of two basins in Northern France: analysis of the uncertainties associated with climate and hydrological models, emission scenarios and downscaling methods. Clim Change 121:771–785. doi: 10.1007/s10584-013-0934-x CrossRefGoogle Scholar
  32. Hourdin F, Musat I, Bony S et al (2006) The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi: 10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  33. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi: 10.1007/s00382-012-1411-3 CrossRefGoogle Scholar
  34. Jiang X, Niu GY, Yang ZL (2009) Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J Geophys Res 114:D06109. doi: 10.1029/2008JD010756 Google Scholar
  35. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  36. Keune J, Gasper F, Goergen K, Hense A, Shrestha P, Sulis M, Kollet S (2016) Studying the influence of groundwater representations on land surface–atmosphere feedbacks during the European heat wave in 2003. J Geophys Res Atmos 121:13301–13325. doi: 10.1002/2016JD025426 CrossRefGoogle Scholar
  37. Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44:W02402. doi: 10.1029/2007WR006004 CrossRefGoogle Scholar
  38. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi: 10.1126/science.1100217 CrossRefGoogle Scholar
  39. Koster RD, Sud YC, Guo Z, Dirmeyer PA, Bonan G, Oleson KW, Chan E, Verseghy D, Cox P, Davies H, Kowalczyk E, Gordon CT, Kanae S, Lawrence D, Liu P, Mocko D, Lu C, Mitchell K, Malyshev S, McAvaney B, Oki T, Yamada T, Pitman A, Taylor CM, Vasic R, Xue Y (2006) GLACE: the global land–atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610. doi: 10.1175/JHM510.1 CrossRefGoogle Scholar
  40. Krakauer NY, Puma MJ, Cook BI (2013) Impacts of soil–aquifer heat and water fluxes on simulated global climate. Hydrol Earth Syst Sci 17:1963–1974. doi: 10.5194/hess-17-1963-2013 CrossRefGoogle Scholar
  41. Krakauer NY, Puma MJ, Cook BI, Gentine P, Nazarenko L (2016) Ocean–atmosphere interactions modulate irrigation’s climate impacts. Earth Syst Dyn 7:863–876. doi: 10.5194/esd-7-863-2016 CrossRefGoogle Scholar
  42. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  43. Laval K, Sadourny R, Serafini Y (1981) Land surface processes in a simplified general circulation model. Geophys Astrophys Fluid Dyn 17:129–150CrossRefGoogle Scholar
  44. Levine XJ, Schneider T (2011) Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J Atmos Sci 68:769–783. doi: 10.1175/2010JAS3553.1 CrossRefGoogle Scholar
  45. Liang X, Xie Z, Huang M (2003) A new parameterization for surface and ground water interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. J Geophys Res 108(D16):8613. doi: 10.1029/2002JD003090 CrossRefGoogle Scholar
  46. Lin G, Wan H, Zhang K, Qian Y, Ghan SJ (2016) Can nudging be used to quantify model sensitivities in precipitation and cloud forcing? J Adv Model Earth Syst 8:1073–1091. doi: 10.1002/2016MS000659 CrossRefGoogle Scholar
  47. Lo MH, Famiglietti JS (2011) Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J Geophys Res 116:D05107. doi: 10.1029/2010JD015134 CrossRefGoogle Scholar
  48. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202. doi: 10.1007/BF00117978 CrossRefGoogle Scholar
  49. Maxwell RM, Condon LE, Kollet SJ (2015) A high resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci Model Dev 8:923–937. doi: 10.5194/gmd-8-1-2015 CrossRefGoogle Scholar
  50. Milly, PCD, Dunne KA (1994) Sensitivity of the global water cycle to the water-holding capacity of land. J Climate 7:506–526CrossRefGoogle Scholar
  51. Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib Atmos Phys 59:455–469Google Scholar
  52. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi: 10.1029/WR012i003p00513 CrossRefGoogle Scholar
  53. Ozdogan M, Rodell M, Beaudoing HK, Toll DL (2010) Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J Hydrometeorol 11(1):171–184. doi: 10.1175/2009JHM1116.1 CrossRefGoogle Scholar
  54. Portmann FT, Doell P, Eisner S, Floerke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8:024023. doi: 10.1088/1748-9326/8/2/024023 CrossRefGoogle Scholar
  55. Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36(12):3653–3662CrossRefGoogle Scholar
  56. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. doi: 10.1002/2015WR017349 CrossRefGoogle Scholar
  57. Rodell M, Beaudoing HK, L’Ecuyer TS et al (2015) The observed state of the water cycle in the early twenty-first century. J Clim 28:8289–8318. doi: 10.1175/JCLI-D-14-00555.1 CrossRefGoogle Scholar
  58. Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The Present and Future of the West African Monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA Transect. J Clim 26:6471–6505. doi: 10.1175/JCLI-D-12-00505.1 CrossRefGoogle Scholar
  59. Schär C, Lüthi D, Beyerle U (1999) The soil–precipitation feedback: a process study with a regional climate model. J Clim 12:722–741. doi: 10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2 CrossRefGoogle Scholar
  60. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi: 10.1016/j.earscirev.2010.02.004
  61. Seneviratne SI et al (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi: 10.1002/grl.50956 CrossRefGoogle Scholar
  62. Seo KH, Frierson DMW, Son JH (2014) A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys Res Lett 40:5251–5258. doi: 10.1002/2014GL060868 CrossRefGoogle Scholar
  63. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111CrossRefGoogle Scholar
  64. Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the earth’s climate. Science 215:1498–1501CrossRefGoogle Scholar
  65. Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi: 10.1007/s00382-009-0543-6 CrossRefGoogle Scholar
  66. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  67. Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh P, Holman I, Treidel H (2013) Groundwater and climate change. Nat Clim Change 3:322–329. doi: 10.1038/NCLIMATE1744 CrossRefGoogle Scholar
  68. Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. doi: 10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  69. Vergnes J-P, Decharme B, Habets F (2014) Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model. J Geophys Res Atmos 119:11065–11086. doi: 10.1002/2014JD021573 CrossRefGoogle Scholar
  70. Wey HW, Lo MH, Lee SY, Yu JY, Hsu HH (2015) Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys Res Lett 42:8605–8614. doi: 10.1002/2015GL065883 CrossRefGoogle Scholar
  71. Xie Z, Di Z, Luo Z, Ma Q (2012) A quasi-three-dimensional variably saturated groundwater flow model for climate modeling. J Hydrometeorol 13:27–46. doi: 10.1175/JHM-D-10-05019.1 CrossRefGoogle Scholar
  72. Yuan X, Xie Z, Zheng J, Tian X, Yang Z (2008) Effects of water table dynamics on regional climate: a case study over east Asian monsoon area. J Geophys Res 113:D21112. doi: 10.1029/2008JD010180 CrossRefGoogle Scholar
  73. Zen Y, Xie Z, Zou J (2017) Hydrologic and climatic responses to global anthropogenic groundwater extraction. J Clim 30(1):71–90 doi: 10.1175/JCLI-D-16-0209.1 CrossRefGoogle Scholar
  74. Zheng X, Eltahir EAB (1998) A soil moisture-rainfall feedback mechanism, 2. Numerical experiments. Water Resour Res 34(4):777–785CrossRefGoogle Scholar
  75. Zou J, Xie Z, Yu Y, Zhan C, Sun Q (2014) Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China. Clim Dyn 42:2125. doi: 10.1007/s00382-013-1995-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fuxing Wang
    • 1
    Email author
  • Agnès Ducharne
    • 2
  • Frédérique Cheruy
    • 1
  • Min-Hui Lo
    • 3
  • Jean-Yves Grandpeix
    • 1
  1. 1.Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne Universités, UPMCParisFrance
  2. 2.Sorbonne Universités, UPMC, CNRS, EPHE, UMR 7619 METISParisFrance
  3. 3.Department of Atmospheric SciencesNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations