Skip to main content

Advertisement

Log in

Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The main objective of the present work is to study the impacts of water table depth on the near surface climate and the physical mechanisms responsible for these impacts through the analysis of land–atmosphere coupled numerical simulations. The analysis is performed with the LMDZ (standard physics) and ORCHIDEE models, which are the atmosphere-land components of the Institut Pierre Simon Laplace (IPSL) Climate Model. The results of sensitivity experiments with groundwater tables (WT) prescribed at depths of 1 m (WTD1) and 2 m (WTD2) are compared to the results of a reference simulation with free drainage from an unsaturated 2 m soil (REF). The response of the atmosphere to the prescribed WT is mostly concentrated over land, and the largest differences in precipitation and evaporation are found between REF and WTD1. Saturating the bottom half of the soil in WTD1 induces a systematic increase of soil moisture across the continents. Evapotranspiration (ET) increases over water-limited regimes due to increased soil moisture, but it decreases over energy-limited regimes due to the decrease in downwelling radiation and the increase in cloud cover. The tropical (25°S–25°N) and mid-latitude areas (25°N–60°N and 25°S–60°S) are significantly impacted by the WT, showing a decrease in air temperature (−0.5 K over mid-latitudes and −1 K over tropics) and an increase in precipitation. The latter can be explained by more vigorous updrafts due to an increased meridional temperature gradient between the equator and higher latitudes, which transports more water vapour upward, causing a positive precipitation change in the ascending branch. Over the West African Monsoon and Australian Monsoon regions, the precipitation changes in both intensity (increases) and location (poleward). The more intense convection and the change of the large-scale dynamics are responsible for this change. Transition zones, such as the Mediterranean area and central North America, are also impacted, with strengthened convection resulting from increased ET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A (2008) Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J Geophys Res 113:D07103. doi:10.1029/2007JD009087

    Article  Google Scholar 

  • Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI, van den Hurk B, Lorenz R, Pitman A, Hagemann S, Meier A, Cheruy F, Ducharne A, Malyshev S, Milly PCD (2016) Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat Clim Change 6:869–874. doi:10.1038/nclimate3029

    Article  Google Scholar 

  • Betts AK (2007) Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J Geophys Res 112:D10108. doi:10.1029/2006JD008191

    Article  Google Scholar 

  • Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702. doi:10.1029/2007GL032417

    Article  Google Scholar 

  • Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using toga coare data. J Atmos Sci 58:3158–3318

    Article  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603. doi:10.1007/ss00382-004-0402-4

    Article  Google Scholar 

  • Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) Howwell do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3–4):803–817. doi:10.1007/s00382-013-1742-8

    Article  Google Scholar 

  • Burkey J (2006) A non-parametric monotonic trend test computing Mann–Kendall Tau, Tau-b, and Sens Slope written in Mathworks-MATLAB implemented using matrix rotations. King County, Department of Natural Resources and Parks, Science and Technical Services section. Seattle. Washington. USA. http://www.mathworks.com/matlabcentral/fileexchange/authors/23983. Accessed Nov 2015

  • Campoy A, Ducharne A, Cheruy F, Hourdin F, Polcher J, Dupont JC (2013) Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J Geophys Res 118:10725–10739. doi:10.1002/jgrd.50627

    Google Scholar 

  • Carsel R, Parrish R (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769. doi:10.1029/WR024i005p00755

    Article  Google Scholar 

  • Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269. doi:10.1007/s00382-012-1469-y

    Article  Google Scholar 

  • Cheruy F, Dufresne JL, Hourdin F, Ducharne A (2014) Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys Res Lett 41:6493–6500. doi:10.1002/2014GL061145

    Article  Google Scholar 

  • d’Orgeval T, Polcher J, de Rosnay P (2008) Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol Earth Syst Sci 12:1387–1401. doi:10.5194/hess-12-1387-2008

    Article  Google Scholar 

  • De Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes. J Geophys Res 107:D11. doi:10.1029/2001JD000634

    Article  Google Scholar 

  • De Angelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. doi:10.1029/2010JD013892

    Article  Google Scholar 

  • Dirmeyer PA (2011) The terrestrial segment of soil moisture–climate coupling. Geophys Res Lett 38:L16702. doi:10.1029/2011GL048268

    Article  Google Scholar 

  • Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Trends in land–atmosphere interactions from CMIP5 simulations. J Hydrometeorol 14:829–849. doi:10.1175/JHM-D-12-0107.1

    Article  Google Scholar 

  • Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi:10.1088/1748-9326/4/3/035006

    Article  Google Scholar 

  • Ducharne A, Laval K (2000) Influence of the realistic description of soil-holding capacity on the global water cycle in a GCM. J Clim 13(24):4393–4413

    Article  Google Scholar 

  • Ducharne A, Koster RD, Suarez MJ, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J Geophys Res 105(D20):24823–24838. doi:10.1029/2000JD900328

    Article  Google Scholar 

  • Dufresne J, Foujols M, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329

    Article  Google Scholar 

  • Fan Y, Miguez-Macho G, Weaver CP, Walko R, Robock A (2007) Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J Geophys Res 112:D10125. doi:10.1029/2006JD008111

    Article  Google Scholar 

  • Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943. doi:10.1126/science.1229881

    Article  Google Scholar 

  • Forster PM, Richardson T, Maycock AC, Smith CJ, Samset BH, Myhre G, Andrews T, Pincus R, Schulz M (2016) Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J Geophys Res Atmos 121:12460–12475. doi:10.1002/2016JD025320.

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Contrib Atmos Phys 53:35–62

    Google Scholar 

  • Gaetani M, Flamant C, Bastin S, Janicot S, Lavaysse C, Hourdin F, Braconnot P, Bony S (2017) West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealised simulations. Clim Dyn. doi:10.1007/s00382-016-3146-z

    Google Scholar 

  • Gastineau G, Le Treut H, LI L (2008) Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus A 60:863–884. doi:10.1111/j.1600-0870.2008.00344.x

    Article  Google Scholar 

  • Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348. doi:10.1007/s00382-011-1252-5

    Article  Google Scholar 

  • Guo ZC et al (2006) GLACE: the global land-atmosphere coupling experiment. Part II: Analysis. J Hydrometeorol 7:611–625. doi:10.1175/JHM511.1

    Article  Google Scholar 

  • Habets F, Boé J, Déqué M, Ducharne A, Gascoin S, Hachour A, Martin E, Pagé C, Sauquet E, Terray L, Thiéry D, Oudin L, Viennot P (2013) Impact of climate change on surface water and ground water of two basins in Northern France: analysis of the uncertainties associated with climate and hydrological models, emission scenarios and downscaling methods. Clim Change 121:771–785. doi:10.1007/s10584-013-0934-x

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S et al (2006) The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi:10.1007/s00382-012-1411-3

    Article  Google Scholar 

  • Jiang X, Niu GY, Yang ZL (2009) Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J Geophys Res 114:D06109. doi:10.1029/2008JD010756

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Keune J, Gasper F, Goergen K, Hense A, Shrestha P, Sulis M, Kollet S (2016) Studying the influence of groundwater representations on land surface–atmosphere feedbacks during the European heat wave in 2003. J Geophys Res Atmos 121:13301–13325. doi:10.1002/2016JD025426

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44:W02402. doi:10.1029/2007WR006004

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Koster RD, Sud YC, Guo Z, Dirmeyer PA, Bonan G, Oleson KW, Chan E, Verseghy D, Cox P, Davies H, Kowalczyk E, Gordon CT, Kanae S, Lawrence D, Liu P, Mocko D, Lu C, Mitchell K, Malyshev S, McAvaney B, Oki T, Yamada T, Pitman A, Taylor CM, Vasic R, Xue Y (2006) GLACE: the global land–atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610. doi:10.1175/JHM510.1

    Article  Google Scholar 

  • Krakauer NY, Puma MJ, Cook BI (2013) Impacts of soil–aquifer heat and water fluxes on simulated global climate. Hydrol Earth Syst Sci 17:1963–1974. doi:10.5194/hess-17-1963-2013

    Article  Google Scholar 

  • Krakauer NY, Puma MJ, Cook BI, Gentine P, Nazarenko L (2016) Ocean–atmosphere interactions modulate irrigation’s climate impacts. Earth Syst Dyn 7:863–876. doi:10.5194/esd-7-863-2016

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199

    Article  Google Scholar 

  • Laval K, Sadourny R, Serafini Y (1981) Land surface processes in a simplified general circulation model. Geophys Astrophys Fluid Dyn 17:129–150

    Article  Google Scholar 

  • Levine XJ, Schneider T (2011) Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J Atmos Sci 68:769–783. doi:10.1175/2010JAS3553.1

    Article  Google Scholar 

  • Liang X, Xie Z, Huang M (2003) A new parameterization for surface and ground water interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. J Geophys Res 108(D16):8613. doi:10.1029/2002JD003090

    Article  Google Scholar 

  • Lin G, Wan H, Zhang K, Qian Y, Ghan SJ (2016) Can nudging be used to quantify model sensitivities in precipitation and cloud forcing? J Adv Model Earth Syst 8:1073–1091. doi:10.1002/2016MS000659

    Article  Google Scholar 

  • Lo MH, Famiglietti JS (2011) Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J Geophys Res 116:D05107. doi:10.1029/2010JD015134

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202. doi:10.1007/BF00117978

    Article  Google Scholar 

  • Maxwell RM, Condon LE, Kollet SJ (2015) A high resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci Model Dev 8:923–937. doi:10.5194/gmd-8-1-2015

    Article  Google Scholar 

  • Milly, PCD, Dunne KA (1994) Sensitivity of the global water cycle to the water-holding capacity of land. J Climate 7:506–526

    Article  Google Scholar 

  • Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib Atmos Phys 59:455–469

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Ozdogan M, Rodell M, Beaudoing HK, Toll DL (2010) Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J Hydrometeorol 11(1):171–184. doi:10.1175/2009JHM1116.1

    Article  Google Scholar 

  • Portmann FT, Doell P, Eisner S, Floerke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8:024023. doi:10.1088/1748-9326/8/2/024023

    Article  Google Scholar 

  • Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36(12):3653–3662

    Article  Google Scholar 

  • Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. doi:10.1002/2015WR017349

    Article  Google Scholar 

  • Rodell M, Beaudoing HK, L’Ecuyer TS et al (2015) The observed state of the water cycle in the early twenty-first century. J Clim 28:8289–8318. doi:10.1175/JCLI-D-14-00555.1

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The Present and Future of the West African Monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA Transect. J Clim 26:6471–6505. doi:10.1175/JCLI-D-12-00505.1

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U (1999) The soil–precipitation feedback: a process study with a regional climate model. J Clim 12:722–741. doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004

  • Seneviratne SI et al (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi:10.1002/grl.50956

    Article  Google Scholar 

  • Seo KH, Frierson DMW, Son JH (2014) A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys Res Lett 40:5251–5258. doi:10.1002/2014GL060868

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Article  Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh P, Holman I, Treidel H (2013) Groundwater and climate change. Nat Clim Change 3:322–329. doi:10.1038/NCLIMATE1744

    Article  Google Scholar 

  • Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Vergnes J-P, Decharme B, Habets F (2014) Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model. J Geophys Res Atmos 119:11065–11086. doi:10.1002/2014JD021573

    Article  Google Scholar 

  • Wey HW, Lo MH, Lee SY, Yu JY, Hsu HH (2015) Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys Res Lett 42:8605–8614. doi:10.1002/2015GL065883

    Article  Google Scholar 

  • Xie Z, Di Z, Luo Z, Ma Q (2012) A quasi-three-dimensional variably saturated groundwater flow model for climate modeling. J Hydrometeorol 13:27–46. doi:10.1175/JHM-D-10-05019.1

    Article  Google Scholar 

  • Yuan X, Xie Z, Zheng J, Tian X, Yang Z (2008) Effects of water table dynamics on regional climate: a case study over east Asian monsoon area. J Geophys Res 113:D21112. doi:10.1029/2008JD010180

    Article  Google Scholar 

  • Zen Y, Xie Z, Zou J (2017) Hydrologic and climatic responses to global anthropogenic groundwater extraction. J Clim 30(1):71–90 doi:10.1175/JCLI-D-16-0209.1

    Article  Google Scholar 

  • Zheng X, Eltahir EAB (1998) A soil moisture-rainfall feedback mechanism, 2. Numerical experiments. Water Resour Res 34(4):777–785

    Article  Google Scholar 

  • Zou J, Xie Z, Yu Y, Zhan C, Sun Q (2014) Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China. Clim Dyn 42:2125. doi:10.1007/s00382-013-1995-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank two anonymous reviewers for their insightful comments. They gratefully acknowledge the financial support provided by the IGEM project ‘Impact of Groundwater in Earth system Models’, co-funded by the French Agence Nationale de la Recherche (ANR Grant no. ANR-14-CE01-0018-01) and the Taiwanese Ministry of Science and Technology (MoST). The IDRIS computational facilities (Institut du Développement et des Ressources en Informatique Scientifique, CNRS, France) were used to perform all the IPSL-CM simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4404 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ducharne, A., Cheruy, F. et al. Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model. Clim Dyn 50, 3505–3522 (2018). https://doi.org/10.1007/s00382-017-3820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3820-9

Keywords

Navigation