Advertisement

Climate Dynamics

, Volume 50, Issue 9–10, pp 3457–3484 | Cite as

Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau

  • Meilin Zhu
  • Tandong Yao
  • Wei Yang
  • Baiqing Xu
  • Guanjian Wu
  • Xiaojun Wang
Article

Abstract

Glacier mass balance shows a spatially heterogeneous pattern in response to global warming on the Tibetan Plateau (TP), and the climate mechanisms controlling this pattern require further study. In this study, three glaciers where systematic glaciological and meteorological observations have been carried out were selected, specifically Parlung No. 4 (PL04) and Zhadang (ZD) glaciers on the southern TP and Muztag Ata No. 15 (MZ15) glacier in the eastern Pamir. The characteristics of the mass and energy balances of these three glaciers during the periods between October 1th, 2008 and September 23rd, 2013 were analyzed and compared using the energy and mass balance model. Results show that differences in surface melt, which mainly result from differences in the amounts of incoming longwave radiation (L in ) and outgoing shortwave radiation (S out ), represent the largest source of the observed differences in mass balance changes between PL04 and ZD glaciers and MZ15 glacier, where air temperature, humidity, precipitation and cloudiness are dramatically different. In addition, sensitivity experiments show that mass balance sensitivity to air temperature change is remarkably higher than that associated with precipitation change on PL04 and ZD glaciers, in contrast results from MZ15 glacier. And significantly higher sensitivities to air temperature change are noted for PL04 and ZD glaciers than for MZ15 glacier. These significant differences in the sensitivities to air temperature change are mainly caused by differences in the ratio of snowfall to precipitation during the ablation season, melt energy (L in +S out ) during the ablation season and the seasonality of precipitation among the different regions occupied by glaciers. In turn, these conditions are related to local climatic conditions, especially air temperature. These factors can be used to explain the different patterns of change in Tibetan glacier mass balance under global warming.

Keyword

Glacier mass and energy balance Global warming Climate characteristics Climate sensitivity Tibetan Plateau 

Notes

Acknowledgements

We acknowledge the staff at the Muztagh Ata Station for Westerly Environment Observation and Research and the Nam Co Monitoring and Research Station for Multisphere Interactions, Institute of Tibetan Research, Chinese Academy of Sciences, for help in the field. We thank the Third Pole Environment Database, Institute of Tibetan Research, Chinese Academy of Sciences and the National Climate Center, China Meteorological Administration, for providing the climate data used herein. We thank two anonymous reviewers for valuable insights that greatly strengthened the manuscript. We thank Dieter Scherer and Julia Curio (Technical University of Berlin) and Fabien Maussion (University of Innsbruck) for providing the HAR data, and Kun Yang (Institute of Tibetan Research, Chinese Academy of Sciences) for providing the CMFD data. The SRTM data and the Landsat data were provided by the US Geological Survey. This study was jointly funded by the National Natural Science Foundation of China (Grant Nos. 41190081, 91547104, 41601081, 91647205, 41371085, and 41125003) and the China Postdoctoral Science Foundation (Grant No. 2017M611014).

Supplementary material

382_2017_3817_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5445 KB)

References

  1. Anderson B, Mackintosh A, Stumm D, George L, Kerr T, Winter-Billington A, Fitzsimons S (2010) Climate sensitivity of a high-precipitation glacier in New Zealand. J Glaciol 56(195):114–128. doi: 10.3189/002214310791190929 CrossRefGoogle Scholar
  2. Arnold N, Willis I, Sharp M, Richards K, Lawson W (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 42(140):77–89CrossRefGoogle Scholar
  3. Ayala A, Pellicciotti F, Shea JM (2015) Modeling 2 m air temperatures over mountain glaciers: exploring the influence of katabatic cooling and external warming. J Geophys Res 120(8):3139–3157. doi: 10.1002/2015JD023137 Google Scholar
  4. Barral H, Genthon C, Trouvilliez A, Brun C, Amory C (2014) Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues. Cryosphere 8:1905–1919 doi: 10.5194/tc-8-1905-2014 CrossRefGoogle Scholar
  5. Bintanja R, Reijmer CH (2001) A simple parameterization for snowdrift sublimation over Antarctic snow surfaces. J Geophys Res 106(D23):31739–31748. doi: 10.1029/2000JD000107 CrossRefGoogle Scholar
  6. Bolch T, Yao T, Kang S, Buchroithner MF (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433 doi: 10.5194/tc-4-419-2010 CrossRefGoogle Scholar
  7. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J, Frey H, Kargel J, Fujita K, Scheel M (2012) The State and Fate of Himalayan Glaciers. Science 336(6079):310–314. doi: 10.1126/science.1215828 CrossRefGoogle Scholar
  8. Brock BW, Arnold NS (2000) A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies. Earth Surf Proc Land 25(6):649–658. doi: 10.1002/1096-9837(200006)25:6<649::aid-esp97>3.0.co;2-u CrossRefGoogle Scholar
  9. Cao B (2013) Glacier variation in the Lenglongling range of eastern Qilian mountains. PhD thesis, University of Lanzhou (in Chinese with English abstract)Google Scholar
  10. Crawford TM, Duchon CD (1999) An improved parameterization for estimating effective atmospheric emissivity for use in Calculating Daytime Downwelling Longwave Radiation. J Appl Meteorol 38(4):474–480CrossRefGoogle Scholar
  11. Ding B, Yang K, Qin J, Wang L, Chen Y, He X (2014) The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J Hydrol 513:154–163. doi: 10.1016/j.jhydrol.2014.03.038 CrossRefGoogle Scholar
  12. Farinotti D, Longuevergne L, Moholdt G, Duethmann D, Mölg T, Bolch T, Vorogushyn S, Güntner A (2015) Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat Geosci 8:716–722 doi: 10.1038/ngeo2513 CrossRefGoogle Scholar
  13. Favier V, Wagnon P, Ribstein P (2004) Glaciers of the outer and inner tropics: A different behaviour but a common response to climatic forcing. Geophys Res Lett 31:L16403. doi: 10.1029/2004GL020654 CrossRefGoogle Scholar
  14. Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J Glaciol 46(153):244–252. doi: 10.3189/172756500781832945 CrossRefGoogle Scholar
  15. Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci USA 108(34):14011–14014. doi: 10.1073/pnas.1106242108 CrossRefGoogle Scholar
  16. Fujita K, Sakai A (2014) Modelling runoff from a Himalayan debris-covered glacier. Hydrol Earth Syst Sci 18:2679–2694. doi: 10.5194/hess-18-2679-2014 CrossRefGoogle Scholar
  17. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286 doi: 10.5194/tc-7-1263-2013 CrossRefGoogle Scholar
  18. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SR, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi: 10.1126/science.1234532 CrossRefGoogle Scholar
  19. Giesen R, Van den Broeke M, Oerlemans J, Andreassen L (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J Geophys Res 113:D21208. doi: 10.1029/2008JD010390 CrossRefGoogle Scholar
  20. Greuell W, Böhm R (1998) 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J Glaciol 44(146):9–20CrossRefGoogle Scholar
  21. Guo W, Liu S, Yao X, Xu J, Shangguan D, Wu L, Zhao J, Liu Q, Zongli Jiang Z, Wei J, Bao W, Yu P, Ding L, Li G, Li P, Ge C, Wang Y (2014) The second glacier inventory dataset of China (version 1.0). Cold and Arid Regions Science Data Center: Lanzhou, China doi: 10.3972/glacier.001.2013.db
  22. Guo W, Liu S, Xu J, Wu L, Shangguan D, Yao X, Wei J, Bao W, Yu P, Liu Q, Jiang Z (2015) The second Chinese glacier inventory: data, methods and results. J Glaciol 61(226):357–372. doi: 10.3189/2015JoG14J209 CrossRefGoogle Scholar
  23. Guo X, Wang L, Tian L (2016) Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau International. J Climatol 36(4):1901–1916. doi: 10.1002/joc.4468 CrossRefGoogle Scholar
  24. He J, Yang K (2011) China meteorological forcing dataset cold and arid regions science data center at Lanzhou. doi: 10.3972/westdc.002.2014.db
  25. Hewitt K (2005) The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt Res Dev 25(4):332–340 doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2 CrossRefGoogle Scholar
  26. Hock R, Holmgren B (2005) A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden. J Glaciol 51(172):25–36. doi: 10.3189/172756505781829566 CrossRefGoogle Scholar
  27. Holzer N, Vijay S, Yao T, Xu B, Buchroithner M, Bolch T (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 9:2071–2088 doi: 10.5194/tc-9-2071-2015 CrossRefGoogle Scholar
  28. Huintjes E (2014) Energy and mass balance modelling for glaciers on the Tibetan Plateau: extension, validation and application of a coupled snow and energy balance model. PhD thesis, RWTH Aachen University, P 222, http://publications.rwth-aachen.de/record/459462
  29. Huintjes E, Sauter T, Schröter B, Maussion F, Yang W, Kropáček J, Buchroithner M, Scherer D, Kang S, Schneider C (2015) Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arct Antarct Alp Res 47(3):573–590. doi: 10.1657/AAAR0014-073 CrossRefGoogle Scholar
  30. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328(5984):1382–1385. doi: 10.1126/science.1183188 CrossRefGoogle Scholar
  31. Jiang X, Wang N, He J, Wu X, Song G (2010) A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin Sci Bull 55(20):2079–2087 doi: 10.1007/s11434-010-3068-9 CrossRefGoogle Scholar
  32. Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9:557–564 doi: 10.5194/tc-9-557-2015 CrossRefGoogle Scholar
  33. Kapnick SB, Delworth TL, Ashfaq M, Malyshev S, Milly PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7:834–840 doi: 10.1038/ngeo2269 CrossRefGoogle Scholar
  34. Ke L, Ding X, Song C (2015) Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens Environ 168:13–23CrossRefGoogle Scholar
  35. Li B, Yu Z, Liang Z, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global Planet Change 118(4):69–84. doi: 10.1016/j.gloplacha.2014.04.006 CrossRefGoogle Scholar
  36. Li B, Acharya K, Yu Z, Liang Z, Su F (2015) The Mass and Energy Exchange of a Tibetan Glacier: Distributed Modeling and Climate Sensitivity. J Am Water Resour As 51(4):1088–1100. doi: 10.1111/jawr.12286 CrossRefGoogle Scholar
  37. Li S, Yao T, Yang W, Yu W, Zhu M (2016) Melt season hydrological characteristics of the Parlung No. 4 Glacier, in Gangrigabu Mountains, south-east Tibetan Plateau. Hydrol Process 30(8):1171–1191. doi: 10.1002/hyp.10696 CrossRefGoogle Scholar
  38. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y CrossRefGoogle Scholar
  39. Liu Q, Liu S (2015) Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim Dyn 46(1–2):303–316 doi: 10.1007/s00382-015-2585-2 Google Scholar
  40. Liu S, Ding Y, Wang N, Xie Z (1998) Mass balance sensitivity to climate change of the Glacier No. 1 at the Urumqi River Head, Tianshan mountains. J Glaciol Geocryol 20(1):9–13 (Chinese with English abstract)Google Scholar
  41. Ma Y, Zhang Y, Yang D, Farhan SB (2015) Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int J Climatol 35(7):1201–1211. doi: 10.1002/joc.4045 CrossRefGoogle Scholar
  42. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2013) Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J Clim 27(5):1910–1927. doi: 10.1175/JCLI-D-13-00282.1 CrossRefGoogle Scholar
  43. Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109:D16104. doi: 10.1029/2003JD004338 CrossRefGoogle Scholar
  44. Mölg T, Cullen NJ, Hardy DR, Kaser G, Klok L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int J Climatol 28(7):881–892. doi: 10.1002/joc.1589 CrossRefGoogle Scholar
  45. Mölg T, Maussion F, Yang W, Scherer D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6:1445–1461 doi: 10.5194/tc-6-1445-2012 CrossRefGoogle Scholar
  46. Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4(1):68–73 doi: 10.1038/Nclimate2055 CrossRefGoogle Scholar
  47. Neckel N, Kropáček J, Bolch T, Hochschild V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ res lett 9(1):014009. doi: 10.1088/1748-9326/9/1/014009 CrossRefGoogle Scholar
  48. Nicholson LI, Prinz R, Mölg T, Kaser G (2013) Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers. Cryosphere 7:1205–1225 doi: 10.5194/tc-7-1205-2013 CrossRefGoogle Scholar
  49. Oerlemans J (2001) Glaciers and climate change. AA Balkema Publishers, RotterdamGoogle Scholar
  50. Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14:267–274 doi: 10.1007/s003820050222 CrossRefGoogle Scholar
  51. Oerlemans J, Giesen RH, Van Den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J Glaciol 55(192):729–736. doi: 10.3189/002214309789470969 CrossRefGoogle Scholar
  52. Paterson W (1994) The physics of glaciers, 3rd edn. Oxford Press, Butterworth-HeinemannGoogle Scholar
  53. Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley, JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552 doi: 10.3189/2014JoG13J176 CrossRefGoogle Scholar
  54. Pu J, Yao T, Yang M, Tian L, Wang N, Ageta Y, Fujita K (2008) Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol Process 22(16):2953–2958. doi: 10.1002/hyp.6865 CrossRefGoogle Scholar
  55. Radić V, Menounos B, Shea J, Fitzpatrick N, Tessema MA, Déry SJ (2017) Evaluation of different methods to model near-surface turbulent fluxes for an alpine glacier in the Cariboo Mountains, BC, Canada. The Cryosphere Discuss https://doi.org/10.5194/tc-2017-80, in review, 2017
  56. Rasmussen LA (2013) Meteorological controls on glacier mass balance in High Asia. Ann Glaciol 54(63):352–359. doi: 10.3189/2013AoG63A353 CrossRefGoogle Scholar
  57. Reijmer CH, Hock R (2008) Internal accumulation on Storglaciaren, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. J Glaciol 54(184):61–72. doi: 10.3189/002214308784409161 CrossRefGoogle Scholar
  58. Rupper S, Roe G, Gillespie A (2009) Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quaternary Res 72(3):337–346CrossRefGoogle Scholar
  59. Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartari G (2015) Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last two decades (1994–2013). Cryosphere 9:1229–1247 doi: 10.5194/tcd-8-5911-2014 CrossRefGoogle Scholar
  60. Shi Y, Liu C, Wang Z (2008) Concise Glacier Inventory of China Shanghai. Shanghai Popular Science Press, ShanghaiGoogle Scholar
  61. Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J Geophys Res 116:D13105. doi: 10.1029/2010JD015105 CrossRefGoogle Scholar
  62. Sun W, Qin X, Ren J, Yang X, Zhang T, Liu Y, Cui X, Du W (2012) The Surface Energy Budget in the Accumulation Zone of the Laohugou Glacier No. 12 in the Western Qilian Mountains, China, in Summer 2009. Arct Antarct Alp Res 44(3):296–305. doi: 10.1657/1938-4246-44.3.296 CrossRefGoogle Scholar
  63. Sun W, Qin X, Du W, Liu W, Liu Y, Zhang T, Xu Y, Zhao Q, Wu J, Ren J (2014) Ablation modeling and surface energy budget in the ablation zone of Laohugou glacier No. 12, western Qilian mountains, China. Ann Glaciol 55(66):111–120. doi: 10.3189/2014AoG66A902 CrossRefGoogle Scholar
  64. Tian H, Yang T, Liu Q (2014) Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Anna Glaciol 55(66):187–197CrossRefGoogle Scholar
  65. Wagnon P, Ribstein P, Francou B, Pouyaud B (1999) Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J Geophys Res 104(D4):3907–3923. doi: 10.1029/1998jd200011 CrossRefGoogle Scholar
  66. Wagnon P, Vincent, C., Arnaud Y, Berthier E, Vuillermoz E, Gruber S, Ménégoz M, Gilbert A, Dumont M, Shea MJ, Stumm D, Pokhrel BK (2013) Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 7:1769–1786 doi: 10.5194/tc-7-1769-2013 CrossRefGoogle Scholar
  67. Wang N, He J, Pu J, Jiang X, Jing Z (2010) Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin Sci Bull 55(33):3810–3817 doi: 10.1007/s11434-010-4167-3 CrossRefGoogle Scholar
  68. Wang W, Yao T, Yang X (2011) Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann Glaciol 52:9–17CrossRefGoogle Scholar
  69. Wang S, Pu J, Wang N (2012) Study on mass balance and sensitivity to climate change in summer on the Qiyi Glacier, Qilian Mountains. Sci Cold Arid Regions 4:281–287 doi: 10.3724/SP.J.1226.2012.00281 CrossRefGoogle Scholar
  70. Wang S, Yao T, Tian L, Pu J (2017) Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957–2013. J Glaciol 63(239):523–534 doi: 10.1017/jog.2017.13 CrossRefGoogle Scholar
  71. WGMS (2015) Global glacier change bulletin No. 1 (2012–2013). In: Zemp M, Gärtner-Roer I, Nussbaumer SU, Hüsler F, Machguth H, Mölg N, Paul F, and Hoelzle M. (eds.), ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, doi: 10.5904/wgms-fog-2015-11
  72. Wu X, He J, Jiang X, Wang N (2016) Analysis of surface energy and mass balance in the accumulation zone of Qiyi Glacier, Tibetan Plateau in an ablation season. Environ. Earth Sci 75:1–13. doi: 10.1007/s12665-016-5591-8 CrossRefGoogle Scholar
  73. Xu B, Cao J, Hansenc J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci USA 106(52):22114–22118 doi: 10.1073/pnas.0910444106 CrossRefGoogle Scholar
  74. Yang W, Yao T, Xu B, Ma L, Wang Z, Wan M (2010) Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin Sci Bull 55(20):2097–2102 doi: 10.1007/s11434-010-3214-4 CrossRefGoogle Scholar
  75. Yang W, Guo X, Yao T, Yang K, Zhao L, Li S, Zhu M (2011) Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J Geophys Res 116:D14116. doi: 10.1029/2010JD015183 CrossRefGoogle Scholar
  76. Yang W, Yao T, Guo X, Zhu M, Li S, Kattel DB (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J Geophys Res 118(17):9579–9594. doi: 10.1002/jgrd.50760 Google Scholar
  77. Yang W, Guo X, Yao T, Zhu M, Wang Y (2016) Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim Dyn 47:805–815 doi: 10.1007/s00382-015-2872-y CrossRefGoogle Scholar
  78. Yao T, Liu X, Wang N, Shi Y (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chin Sci Bull 45(13):1236–1243CrossRefGoogle Scholar
  79. Yao T, Li Z, Yang W, Guo X, Zhu L, Kang S, Wu Y, Yu W (2010) Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin Sci Bull 55(20):2072–2078CrossRefGoogle Scholar
  80. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667 doi: 10.1038/nclimate1580 CrossRefGoogle Scholar
  81. Yu W, Yao T, Kang S, Pu J, Yang W, Gao T, Zhao H, Zhou H, Li S, Wang W, Ma L (2013) Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau). J Hydrol 495:64–73. doi: 10.1016/j.jhydrol.2013.04.034 CrossRefGoogle Scholar
  82. Zafar M, Ahmed M, Rao M, Buckley B, Khan N, Wahab M, Palmer J (2016) Karakorum temperature out of phase with hemispheric trends for the past five centuries. Clim Dyn 46(5–6):1943–1952 doi: 10.1007/s00382-015-2685-z CrossRefGoogle Scholar
  83. Zhang Y, Hirabayashi Y, Liu S (2012) Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. J Hydrol 444:146–160. doi: 10.1016/j.jhydrol.2012.04.014 CrossRefGoogle Scholar
  84. Zhang G, Kang S, Fujita K, Huintjes E, Xu J, Yamazaki T, Haginoya S, Yang W, Scherer D, Schneider C, Yao T (2013) Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J Glaciol 59(213):137–148. doi: 10.3189/2013AoG64A111 CrossRefGoogle Scholar
  85. Zhang G, Yao T, Xie H, Wang W, Yang W (2015) An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global Planet Change 131:148–157. doi: 10.1016/j.gloplacha.2015.05.013 CrossRefGoogle Scholar
  86. Zhang G, Kang S, Cuo L, Qu B (2016a) Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model. J Geophys Res 121(16):9521–9539. doi: 10.1002/2016JD025434 Google Scholar
  87. Zhang Z, Liu S, Wei J, Xu J, Guo W, Bao W, Jiang Z (2016b) Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PloS one 11(1):e0147327. doi: 10.1371/journal.pone.0147327 CrossRefGoogle Scholar
  88. Zhang G, Yao T, Piao S, Bolch T, Xie H, Chen D, Gao Y, O’Reilly CM, Shum CK, Yang K, Yi S, Lei Y, Wang W, He Y, Shang K, Yang X, Zhang H (2017) Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett 44:252–260. doi: 10.1002/2016GL072033 CrossRefGoogle Scholar
  89. Zhu M, Yao T, Yang W, Maussion F, Huintjes E, Li S (2015) Energy- and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau. J Glaciol 61(227):595–607. doi: 10.3189/2015JoG14J206 CrossRefGoogle Scholar
  90. Zhu M, Yao T, Yang W, Xu B, Wang X (2017) Evaluation of parameterizations of incoming longwave radiation in the high-mountain region of the Tibetan Plateau. J Appl Meteorol Clim 56(4):833–848. doi: 10.1175/jamc-d-16-0189.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Meilin Zhu
    • 1
  • Tandong Yao
    • 1
    • 2
  • Wei Yang
    • 1
    • 2
  • Baiqing Xu
    • 1
    • 2
  • Guanjian Wu
    • 1
    • 2
  • Xiaojun Wang
    • 3
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of Sciences (CAS)BeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.Institute of Agricultural Economics and DevelopmentChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations