Climate Dynamics

, Volume 50, Issue 9–10, pp 3397–3411 | Cite as

Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

Article

Abstract

We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992–2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run (“mother domain”) encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

Keywords

Lake Malawi Regional climate model Lake modeling Lake–atmosphere interactions Rainfall RegCM4 

Notes

Acknowledgements

We thank the two anonymous reviewers for their constructive comments and suggestions which helped to improve the quality of this manuscript. This research was funded under the project SOCOCA (Socioeconomic Consequences of Climate Change in sub-equatorial Africa, http://www.mn.uio.no/geo/english/research/projects/sococa/index.html), sponsored by the Research Council of Norway. This research was conducted while the first author was employed by the Abdus Salam International Centre for Theoretical Physics (ICTP). The final stage of the writing has been performed at the University of California, Los Angeles (UCLA). Support from the U.S. National Science Foundation grants AGS-1419526 is gratefully acknowledged. RegCM4 simulations outputs for this paper are archived by the Earth System Physics (ESP) section of the Abdus Salam ICTP and can be obtained by contacting the corresponding author (Dr. Ismaïla Diallo; idiallo@ucla.edu).

Supplementary material

382_2017_3811_MOESM1_ESM.ppt (1.6 mb)
Supplementary material 1 (PPT 1626 KB)

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bovin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Anyah RO, Semazzi FHM (2004) Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperature. Theor Appl Climatol 79:55–69. doi: 10.1007/s00704-004-0057-4 CrossRefGoogle Scholar
  3. Anyah RO, Semazzi FH, Xie L (2006) Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon Weather Rev 134(12):3588–3609CrossRefGoogle Scholar
  4. Banda MC, Chisambo J, Sipawe RD, Mwakiyongo KR, Weyl OLF, Bay M (2001) Fisheries Research Unit, research plan: 2000 and 2001. Fish Bull 44:1–54. http://www.malawicichlids.com/fishbull_44_2001.pdf Google Scholar
  5. Bates GT, Giorgi F, Hostetler SW (1993) Toward the simulation of the effects of the Great Lakes on regional climate. Mon Weather Rev 121(5):1373–1387CrossRefGoogle Scholar
  6. Bates GT, Hostetler SW, Giorgi F (1995) Two-year simulation of the Great Lakes region with a coupled modeling system. Mon Weather Rev 123(5):1505–1522CrossRefGoogle Scholar
  7. Bonan GB (1995) Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim 8(11):2691–2704CrossRefGoogle Scholar
  8. Bootsma HA, Hecky RE (1993) Conservation of the African Great Lakes: a limnological perspective. Conserv Biol 7(3):644–656CrossRefGoogle Scholar
  9. Branchu P, Bergonzini L, Benedetti M, Ambroisi JP, Klerkx J (2005) Sensibilité à la pollution métallique de deux grands lacs africains (Tanganyika et Malawi). Revue des sciences de l’eau/J Water Sci 18:161–180Google Scholar
  10. Brown ET, Le Callonnec L, German CR (2000) Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: a diagnostic paleotracer for episodic changes in mixing depth. Geochim Cosmochim Acta 64(20):3515–3523CrossRefGoogle Scholar
  11. Chavula G, Brezonik P, Thenkabail P, Johnson T, Bauer M (2009) Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Phys Chem Earth 34(13):749–754CrossRefGoogle Scholar
  12. Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the Early 21st century. Int J Geophys 2012:1–19. doi: 10.1155/2012/972.896 CrossRefGoogle Scholar
  13. Diallo I, Sylla MB, Camara M, Gaye AT (2013) Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor Appl Climatol 113:351–362. doi: 10.1007/s00704-012-0791-y CrossRefGoogle Scholar
  14. Diallo I, Bain CL, Gaye AT, Moufouma-Okia W, Niang C, Dieng MDB, Graham R (2014) Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model. Clim Dyn 43(3–4):575–594. doi: 10.1007/s00382-014-2219-0 CrossRefGoogle Scholar
  15. Diallo I, Giorgi F, Sukumaran S, Stordal F, Giuliani G (2015) Evaluation of RegCM4 driven by CAM4 over Southern Africa: mean climatology, interannual variability and daily extremes of wet season temperature and precipitation. Theor Appl Climatol 121(3–4):749–766. doi: 10.1007/s00704-014-1260-6 CrossRefGoogle Scholar
  16. Diallo I, Giorgi F, Deme A, Tall M, Mariotti L, Gaye AT (2016) Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim Dyn 47(12):3931–3954. doi: 10.1007/s00382-016-3052-4 CrossRefGoogle Scholar
  17. Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Tech Rep, National Center for Atmospheric Research Tech Note NCAR.TN-387 + STR, NCAR, BoulderGoogle Scholar
  18. Eccles DH (1974) An outline of the physical limnology of Lake Malawi. Limnol Oceanogr 19(5):730–742CrossRefGoogle Scholar
  19. Fotso-Nguemo TC, Vondou DA, Pokam WM, Djomou ZY, Diallo I, Haensler A, Tchotchou LA, Kamsu-Tamo PH, Gaye AT, Tchawoua C (2017) On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa. Clim Dyn. doi: 10.1007/s00382-017-3547-7 Google Scholar
  20. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  21. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:1722–1733. doi: 10.1175/1520-0469(1980)&a>2.0.CO;2 CrossRefGoogle Scholar
  22. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim. doi: 10.1175/2011JCLI4083.1 Google Scholar
  23. Giorgi F, Marinucci MR, Bates G (1993a) Development of a second generation regional climate model (RegCM2). I. Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  24. Giorgi F, Marinucci MR, Bates G, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2). II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  25. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi: 10.3354/cr01018 CrossRefGoogle Scholar
  26. Grell G, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research Tech Note NCAR/TN-398 + STR, NCAR, BoulderGoogle Scholar
  27. Guildford SJ, Taylor WD, Bootsma HA, Hendzel LL, Hecky RE, Barlow-Busch L (1999) Factors controlling pelagic algal abundance and composition in Lake Malawi/Nyasa. Water Quality Report, SADC/GEF Lake Malawi/Nyasa Biodiversity Conservation Project. (Ed. Bootsma HA, Hecky RE)Google Scholar
  28. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations. Int J Climatol. doi: 10.1002/joc.3711 Google Scholar
  29. Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  30. Hostetler SW, Bates GT, Giorgi F (1993) Interactive coupling of a lake thermal model with a regional climate model. J Geophys Res 98(D3):5045–5057. doi: 10.1029/92JD02843 CrossRefGoogle Scholar
  31. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, Gavock B, Susskind J (2001) Global Precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50CrossRefGoogle Scholar
  32. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  33. Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420 + STR, NCAR, BoulderGoogle Scholar
  34. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127CrossRefGoogle Scholar
  35. Li L, Diallo I, Xu CY, Stordal F (2015) Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. J Hydrol 528:1–16. doi: 10.1016/j.jhydrol.2015.05.028 CrossRefGoogle Scholar
  36. MacCallum SN, Merchant CJ (2011) ARC-Lake algorithm theoretical basis document ARC-Lake v1. 1, 19952009 [Dataset], The University of Edinburgh, School of GeoSciences/European Space Agency. http://hdl.handle.net/10283/88. Accessed 3 Nov 2016
  37. MacCallum SN, Merchant CJ (2012) Surface water temperature observations of large lakes by optimal estimation. Can J Remote Sens 38(1):25–45CrossRefGoogle Scholar
  38. Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim Change. doi:10.007/s10584-014-1097-0Google Scholar
  39. Martynov A, Sushama L, Laprise R, Winger K, Dugas B (2012) Interactive lakes in the Canadian regional climate model, version 5: the role of lakes in the regional climate of North America. Tellus A. doi: 10.3402/tellusa.v64i0.16226 Google Scholar
  40. Moalafhi DB, Evans JP, Sharma A (2016) Influence of reanalysis datasets on dynamically downscaling the recent past. Clim Dyn. doi: 10.1007/s00382-016-3378-y
  41. N’Datchoh ET, Diallo I, Konare A, Silue S, Ogunjobi KO, Diedhiou A, Doumbia M (2017) Dust induced changes on the West African summer monsoon features. Int J Climatol. doi: 10.1002/joc.5187 Google Scholar
  42. Nicholls FJ, Toumi R (2014) On the lake effects of the Caspian Sea. Q J R Meteorol Soc 140(681):1399–1408CrossRefGoogle Scholar
  43. Notaro M, Holman K, Zarrin A, Fluck E, Vavrus S, Bennington V (2013) Influence of the Laurentian Great Lakes on regional climate. J Clim. doi: 10.1175/JCLI-D-12-00140.1 Google Scholar
  44. Nyamweya C, Desjardins C, Sigurdsson S, Tomasson T, Taabu-Munyaho A, Sitoki L, Stefansson G (2016) Simulation of lake victoria circulation patterns using the regional ocean modeling system (ROMS). PloS One 11(3):e0151272CrossRefGoogle Scholar
  45. Ogwang BA, Chen H, Li X, Gao C (2014) The influence of topography on East African October to December climate: sensitivity experiments with RegCM4. Adv Meteorol 2014:143917. doi: 10.1155/2014/143917 CrossRefGoogle Scholar
  46. Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  47. Small EE, Sloan LC, Hosteller S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104(D6):6583–6602. doi: 10.1029/98JD02348 CrossRefGoogle Scholar
  48. Spigel RH, Coulter GW (1996) Comparison of hydrology and physical limnology of the East African great lakes: Tanganyika, Malawi, Victoria, Kivu and Turkana (with reference to some North American Great Lakes). In: Johnson TC, Odata E (eds) The limnology, climatology and paleoclimatology of the East African lake. Gordon and Breach, pp 103–139Google Scholar
  49. Sun X, Xie L, Semazzi FHM, Liu B (2015) Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon Weather Rev 143:1179–1192. doi: 10.1175/MWR-D-14-00049.1 CrossRefGoogle Scholar
  50. Sylla MB, Giorgi F, Stordal F (2012) Large-scale origins of rainfall and temperature bias in high-resolution simulations over southern Africa. Clim Res 52:193–211. doi: 10.3354/cr01044 CrossRefGoogle Scholar
  51. Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over Africa: assessment of observation products and evaluation of a regional climate model simulation. Int J Climatol. doi: 10.1002/joc.3551 Google Scholar
  52. Tall M, Sylla MB, Diallo I, Pal JS, Faye A, Mbaye ML, Gaye AT (2017) Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor Appl Climatol 129(1–2):655. doi: 10.1007/s00704-016-1805-y CrossRefGoogle Scholar
  53. Thiery W, Davin EL, Panitz HJ, Demuzere M, Lhermitte S, van Lipzig NPM (2015) The impact of the African Great Lakes on the regional climate. J Clim 28(10):4061–4085CrossRefGoogle Scholar
  54. Turuncoglu UU, Elguindi N, Giorgi F, Fournier N, Giuliani G (2013) Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin. Clim Dyn. doi: 10.1007/s00382-012-1623-6 Google Scholar
  55. Vavrus S, Notaro M, Zarrin A (2013) The role of ice cover in heavy lake-effect snowstorms over the Great Lakes Basin as simulated by RegCM4. Mon Weather Rev 141(1):148–165CrossRefGoogle Scholar
  56. Vollmer MK, Weiss RF, Bootsma HA (2002) Ventilation of Lake Malawi/Nyasa. In: Odada EO, Olago DO (eds) The East African great lakes: limnology, paleolimnology, and biodiversity. Kluwer, Dordrecht, pp 209–233CrossRefGoogle Scholar
  57. Williams K, Chamberlain J, Buontempo C, Bain CL (2015) Regional climate model performance in theLakeVictoria basin. Clim Dyn 44:1699–1713. doi: 10.1007/s00382-014-2201-x CrossRefGoogle Scholar
  58. Woltering M, Johnson TC, Werne JP, Schouten S, Damsté JSS (2011) Late Pleistocene temperature history of Southeast Africa: a TEX 86 temperature record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol 303(1):93–102CrossRefGoogle Scholar
  59. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of GeographyUniversity of California, Los Angeles (UCLA)Los AngelesUSA
  2. 2.Earth System Physics SectionThe Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
  3. 3.Department of GeosciencesUniversity of OsloOsloNorway

Personalised recommendations