Climate Dynamics

, Volume 50, Issue 9–10, pp 3301–3314 | Cite as

Evaluating rainfall errors in global climate models through cloud regimes

  • Jackson Tan
  • Lazaros Oreopoulos
  • Christian Jakob
  • Daeho Jin


Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model’s accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.


Cloud regimes Model evaluation Model rainfall Tropics CMIP5 CFMIP2 ISCCP 



We are grateful for valuable feedback from Dongmin Lee. JT is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by USRA through a contract with NASA (NNH15CO48B). LO and DJ gratefully acknowledge support by NASA’s Modeling Analysis and Prediction program. CJ is supported by the ARC Centre of Excellence for Climate System Science (CE110001028). ISCCP data is available at TMPA was provided by the NASA GSFC PPS team and NASA GES DISC, and can be downloaded at The CMIP5 data was provided by the WCRP and archived by the PCMDI at

Supplementary material

382_2017_3806_MOESM1_ESM.pdf (175 kb)
Supplementary material 1 (PDF 174 kb)


  1. Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17(13):2493–2525. doi: 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2 CrossRefGoogle Scholar
  2. Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne JL, Klein SA, Zhang Y, Marchand R, Haynes JM, Pincus R, John VO (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc 92(8):1023–1043. doi: 10.1175/2011BAMS2856.1 CrossRefGoogle Scholar
  3. Bodas-Salcedo A, Williams KD, Field PR, Lock AP (2012) The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: the role of Midlatitude cyclone clouds. J Clim 25(21):7467–7486. doi: 10.1175/JCLI-D-11-00702.1 CrossRefGoogle Scholar
  4. Bodas-Salcedo A, Williams KD, Ringer MA, Beau I, Cole JNS, Dufresne JL, Koshiro T, Stevens B, Wang Z, Yokohata T (2014) Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J Clim 27(1):41–56. doi: 10.1175/JCLI-D-13-00169.1 CrossRefGoogle Scholar
  5. Bony S, Webb M, Bretherton CS, Klein SA, Siebesma P, Tselioudis G, Zhang M (2011) CFMIP: towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. Clivar Exch 56(2):20–22Google Scholar
  6. Chen Y, Del Genio AD (2009) Evaluation of tropical cloud regimes in observations and a general circulation model. Clim Dyn 32(2):355–369. doi: 10.1007/s00382-008-0386-6 CrossRefGoogle Scholar
  7. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  8. Folkins I, Mitovski T, Pierce JR (2014) A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J Geophys Res Atmos 119(5):2113–2130. doi: 10.1002/2013JD020149 CrossRefGoogle Scholar
  9. Gordon ND, Norris JR, Weaver CP, Klein SA (2005) Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J Geophys Res 110(D15):D15S17. doi: 10.1029/2004JD005027 CrossRefGoogle Scholar
  10. Handlos ZJ, Back LE (2014) Estimating vertical motion profile shape within tropical weather states over the oceans. J Clim 27(20):7667–7686. doi: 10.1175/JCLI-D-13-00602.1 CrossRefGoogle Scholar
  11. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184. doi: 10.1080/00031305.1998.10480559 Google Scholar
  12. Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys 53:994–1021. doi: 10.1002/2015RG000488 CrossRefGoogle Scholar
  13. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  14. Jakob C, Schumacher C (2008) Precipitation and latent heating characteristics of the major Tropical Western Pacific cloud regimes. J Clim 21(17):4348–4364. doi: 10.1175/2008JCLI2122.1 CrossRefGoogle Scholar
  15. Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the Tropical Western Pacific. Geophys Res Lett 30(21):2082. doi: 10.1029/2003GL018367 CrossRefGoogle Scholar
  16. Jiang X, Waliser DE, Xavier PK, Petch J, Klingaman NP, Woolnough SJ, Guan B, Bellon G, Crueger T, DeMott C, Hannay C, Lin H, Hu W, Kim D, Lappen CL, Lu MM, Ma HY, Miyakawa T, Ridout JA, Schubert SD, Scinocca J, Seo KH, Shindo E, Song X, Stan C, Tseng WL, Wang W, Wu T, Wu X, Wyser K, Zhang GJ, Zhu H (2015) Vertical structure and physical processes of the Madden–Julian oscillation: exploring key model physics in climate simulations. J Geophys Res Atmos 120(10):4718–4748. doi: 10.1002/2014JD022375 CrossRefGoogle Scholar
  17. Jin D, Oreopoulos L, Lee D (2017a) Regime-based evaluation of cloudiness in CMIP5 models. Clim Dyn 48(1–2):89–112. doi: 10.1007/s00382-016-3064-0 CrossRefGoogle Scholar
  18. Jin D, Oreopoulos L, Lee D (2017b) Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Clim Dyn 48(1–2):113–130. doi: 10.1007/s00382-016-3107-6 CrossRefGoogle Scholar
  19. Kang IS, Yang YM, Tao WK (2015) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn 45(1–2):325–335. doi: 10.1007/s00382-014-2376-1 CrossRefGoogle Scholar
  20. Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98(1):79–93. doi: 10.1175/BAMS-D-15-0004.1 CrossRefGoogle Scholar
  21. Klein SA, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127(10):2514–2531. doi: 10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2 CrossRefGoogle Scholar
  22. Kooperman GJ, Pritchard MS, Burt MA, Branson MD, Randall DA (2016) Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model. J Adv Model Earth Syst 8(1):140–165. doi: 10.1002/2015MS000574 CrossRefGoogle Scholar
  23. Lee D, Oreopoulos L, Huffman GJ, Rossow WB, Kang IS (2013) The precipitation characteristics of ISCCP tropical weather states. J Clim 26(3):772–788. doi: 10.1175/JCLI-D-11-00718.1 CrossRefGoogle Scholar
  24. Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19(12):2665–2690. doi: 10.1175/JCLI3735.1 CrossRefGoogle Scholar
  25. Mason S, Fletcher JK, Haynes JM, Franklin C, Protat A, Jakob C (2015) A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. J Clim 28(15):6001–6018. doi: 10.1175/JCLI-D-14-00846.1 CrossRefGoogle Scholar
  26. Mekonnen A, Rossow WB (2011) The interaction between deep convection and Easterly Waves over Tropical North Africa: a weather state perspective. J Clim 24(16):4276–4294. doi: 10.1175/2011JCLI3900.1 CrossRefGoogle Scholar
  27. Meredith EP, Maraun D, Semenov VA, Park W (2015) Evidence for added value of convection-permitting models for studying changes in extreme precipitation. J Geophys Res Atmos 120(24):12,500–12,513. doi: 10.1002/2015JD024238 CrossRefGoogle Scholar
  28. Moncrieff MW, Waliser DE, Miller MJ, Shapiro MA, Asrar GR, Caughey J (2012) Multiscale convective organization and the YOTC virtual global field campaign. Bull Am Meteorol Soc 93(8):1171–1187. doi: 10.1175/BAMS-D-11-00233.1 CrossRefGoogle Scholar
  29. Oreopoulos L, Rossow WB (2011) The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J Geophys Res 116(D12):D12,202. doi: 10.1029/2010JD015472 CrossRefGoogle Scholar
  30. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 CrossRefGoogle Scholar
  31. Rossow WB, Tselioudis G, Polak A, Jakob C (2005) Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys Res Lett 32(21):L21,812. doi: 10.1029/2005GL024584 CrossRefGoogle Scholar
  32. Rossow WB, Mekonnen A, Pearl C, Goncalves W (2013) Tropical precipitation extremes. J Clim 26(4):1457–1466. doi: 10.1175/JCLI-D-11-00725.1 CrossRefGoogle Scholar
  33. Stachnik JP, Schumacher C, Ciesielski PE (2013) Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. J Clim 26(18):7097–7116. doi: 10.1175/JCLI-D-12-00673.1 CrossRefGoogle Scholar
  34. Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115(D24):D24,211. doi: 10.1029/2010JD014532 CrossRefGoogle Scholar
  35. Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934. doi: 10.1175/JCLI3672.1 CrossRefGoogle Scholar
  36. Tan J, Jakob C, Lane TP (2013) On the identification of the large-scale properties of tropical convection using cloud regimes. J Clim 26(17):6618–6632. doi: 10.1175/JCLI-D-12-00624.1 CrossRefGoogle Scholar
  37. Tan J, Jakob C, Rossow WB, Tselioudis G (2015) Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature 519(7544):451–454. doi: 10.1038/nature14339 CrossRefGoogle Scholar
  38. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  39. Tromeur E, Rossow WB (2010) Interaction of tropical deep convection with the large-scale circulation in the MJO. J Clim 23(7):1837–1853. doi: 10.1175/2009JCLI3240.1 CrossRefGoogle Scholar
  40. Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41(9–10):2679–2696. doi: 10.1007/s00382-012-1609-4 CrossRefGoogle Scholar
  41. Tsushima Y, Ringer MA, Koshiro T, Kawai H, Roehrig R, Cole J, Watanabe M, Yokohata T, Bodas-Salcedo A, Williams KD, Webb MJ (2016) Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Clim Dyn 46(9–10):3025–3039. doi: 10.1007/s00382-015-2750-7 CrossRefGoogle Scholar
  42. Williams KD, Tselioudis G (2007) GCM intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29(2–3):231–250. doi: 10.1007/s00382-007-0232-2 CrossRefGoogle Scholar
  43. Williams KD, Webb MJ (2009) A quantitative performance assessment of cloud regimes in climate models. Clim Dyn 33(1):141–157. doi: 10.1007/s00382-008-0443-1 CrossRefGoogle Scholar
  44. Williams KD, Senior CA, Slingo A, Mitchell JFB (2005) Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes. Clim Dyn 24(7–8):701–719. doi: 10.1007/s00382-004-0512-z CrossRefGoogle Scholar
  45. Yuan W, Yu R, Zhang M, Lin W, Li J, Fu Y (2013) Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J Clim 26(10):3159–3172. doi: 10.1175/JCLI-D-12-00119.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Universities Space Research AssociationColumbiaUSA
  3. 3.ARC Centre of Excellence for Climate System Science and School of Earth, Atmosphere and EnvironmentMonash UniversityClaytonAustralia

Personalised recommendations