Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

Abstract

Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020–2049) and far future (2070–2099) precipitation climatology with respect to corresponding present climate (1970–2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970–2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ali S, Li D, Congbin F, Khan F (2015) Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environ Res Lett 10(1):014007

    Article  Google Scholar 

  2. Andermann C, Bonnet S, Gloaguen R (2011) Evaluation of precipitation data sets along the Himalayan front. Geochem Geophys Geosyst 12(7):1–16

    Article  Google Scholar 

  3. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092

    Article  Google Scholar 

  4. Arakawa O, Kitoh A (2012) Elevation dependency of summertime precipitation and its change by global warming over the Tibetan Plateau and the surroundings simulated by a 60-km-mesh atmospheric general circulation model. 気象集誌. 第 2 輯 90(0):151–165

    Google Scholar 

  5. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci Discuss 8(1):47–61

    Article  Google Scholar 

  6. Arora M, Singh P, Goel NK, Singh RD (2006) Spatial distribution and seasonal variability of rainfall in a mountainous basin in the Himalayan region. Water Resour Manag 20(4):489–508

    Article  Google Scholar 

  7. Barros AP, Lettenmaier DP (1993) Dynamic modeling of the spatial distribution of precipitation in mountainous areas. Mon Weather Rev 121(4):1195–1214

    Article  Google Scholar 

  8. Basistha A, Arya DS, Goel NK (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol 29(4):555–572

    Article  Google Scholar 

  9. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In Climate variability and change in high elevation regions: past, present and future. Springer, Netherlands, pp. 5–31

    Google Scholar 

  10. Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30(4):535–548

    Google Scholar 

  11. Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):1–5

    Article  Google Scholar 

  12. Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115(F3):1–25

    Article  Google Scholar 

  13. Chan RY, Vuille M, Hardy DR, Bradley RS (2008) Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation. Theor Appl Climatol 93(3–4), 149–165.

    Article  Google Scholar 

  14. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publications, University of Nebraska-Lincoln, USA

  15. Clayton HL (1982) Distribution and stochastic generation of annual and monthly precipitation on a mountainous watershed in southwest Idaho. Jawra J Am Water Resour Assoc 18(5):875–883

    Article  Google Scholar 

  16. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  17. Dash SK, Mishra SK, Pattnayak KC, Mamgain A, Mariotti L, Coppola E, Giorgi F, Giuliani G (2015) Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor Appl Climatol 122(3–4):581–593

    Article  Google Scholar 

  18. Dhar ON, Mandal BN, Kulkarni AK (2000) Review of precipitation studies carried out for high Himalaya in recent years. In: Pangtey YPS (ed) High Altitudes of the Himalaya—II (biodiversity, ecology and environment), vol 2, pp 509–521

  19. Dimri AP, Dash SK (2012) Wintertime climatic trends in the western Himalayas. Clim Change 111(3–4):775–800

    Article  Google Scholar 

  20. Dimri AP, Yasunari T, Wiltshire A, Kumar P, Mathison C, Ridley J, Jacob D (2013) Application of regional climate models to the Indian winter monsoon over the western Himalayas. Sci Total Environ 468:S36–S47

    Article  Google Scholar 

  21. Dobler A, Ahrens B (2008) Precipitation by a regional climate model and bias correction in Europe and South Asia. Meteorol Z 17(4):499–509

    Article  Google Scholar 

  22. Dobler A, Ahrens B (2011) Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM. J Geophys Res 116(D24):1–13

    Article  Google Scholar 

  23. Fan F, Bradley RS, Rawlins MA (2014) Climate change in the northeastern US: regional climate model validation and climate change projections. Clim Dyn 43(1–2):145–161

    Article  Google Scholar 

  24. Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J Clim 19(17):4276–4293

    Article  Google Scholar 

  25. Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Energy J 27:343–353

    Google Scholar 

  26. Gautam MR, Timilsina GR, Acharya K (2013) Climate change in the Himalayas: current state of knowledge. World Bank Policy Research Working Paper, (6516)

  27. Ghimire S, Choudhary A, Dimri AP (2015) Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I. Clim Dyn. doi:10.1007/s00382-015-2747-2

    Google Scholar 

  28. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597

    Article  Google Scholar 

  29. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos (1984–2012) 104(D6):6335–6352

    Article  Google Scholar 

  30. Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296

    Article  Google Scholar 

  31. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(3):175

    Google Scholar 

  32. Giorgi F, Coppola E, Solmon F, Mariotti L et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  33. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet Change 100:172–182

    Article  Google Scholar 

  34. Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth V2. 2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629

    Article  Google Scholar 

  35. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25(4), 332–340.

    Article  Google Scholar 

  36. Hijioka Y, Matsuoka Y, Nishimoto H, Masui T, Kainuma M (2008) Global GHG emission scenarios under GHG concentration stabilization targets. J Global Environ Eng 13:97–108

    Google Scholar 

  37. Immerzeel WW, Bierkens MF, Van Beek LP (2009) Hydrological response of climate change in a glaciated catchment in the Himalayas. In AGU Fall Meeting Abstracts 1, 08

  38. Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  39. Jayasankar CB, Surendran S, Rajendran K (2015) Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: role of seasonal cycle and interannual variability. Geophys Res Lett 42(9):3513–3520

    Article  Google Scholar 

  40. Kendall MG (1938) A new measure of rank correlation. Biometrika, 81–93

  41. Krishnan R, Kumar V, Sugi M, Yoshimura J (2009) Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J Atmos Sci 66(3):553–578

    Article  Google Scholar 

  42. Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African Indian monsoon rainfall. Q J R Meteorol Soc 135(640):569–579

    Article  Google Scholar 

  43. Kulkarni A, Patwardhan S, Kumar KK, Ashok K, Krishnan R (2013) Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mt Res Dev 33(2):142–151

    Article  Google Scholar 

  44. Kumar V, Jain SK (2010) Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quatern Int 212(1):64–69

    Article  Google Scholar 

  45. Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ 468:S18–S30

    Article  Google Scholar 

  46. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

    Article  Google Scholar 

  47. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  Google Scholar 

  48. Loukas A, Quick MC (1994) Precipitation Distribution in Coastal British Columbia. JAWRA J Am Water Resour Assoc 30:705–727

    Article  Google Scholar 

  49. Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire AJ, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12(5):849–868

    Article  Google Scholar 

  50. Marquínez J, Lastra J, García P (2003) Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. J Hydrol 270(1):1–11

    Article  Google Scholar 

  51. Masson D, Frei C (2016) Long-term variations and trends of mesoscale precipitation in the Alps: recalculation and update for 1901–2008. Int J Climatol 36(1):492–500

    Article  Google Scholar 

  52. Mathison C, Wiltshire A, Dimri AP, Falloon P, Jacob D, Kumar P, Yasunari T (2013) Regional projections of North Indian climate for adaptation studies. Sci Total Environ 468:S4–S17

    Article  Google Scholar 

  53. Mcgregor JL, Dix MR (2001) The CSIRO conformal-cubic atmospheric GCM. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics (pp. 197–202). Springer Netherlands

  54. Medina S, Houze RA, Kumar A, Niyogi D (2010) Summer monsoon convection in the Himalayan region: terrain and land cover effects. Q J R Meteorol Soc 136(648):593–616

    Google Scholar 

  55. Meehl GA, Arblaster JM (2003) Mechanisms for projected future changes in south Asian monsoon precipitation. Clim Dyn 21(7–8):659–675

    Article  Google Scholar 

  56. Mishra V (2015) Climatic uncertainty in Himalayan water towers. J Geophys Res Atmos 120(7):2689–2705

    Article  Google Scholar 

  57. Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann–Kendall test: a case study of North-Eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  58. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Meehl GA (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  Google Scholar 

  59. Mote P, Brekke L, Duffy PB, Maurer E (2011) Guidelines for constructing climate scenarios. Eos Trans Am Geophys Union 92(31):257–258.

    Article  Google Scholar 

  60. Nengker T, Choudhary A, Dimri AP (2017) Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: part I. Clim Dyn. doi:10.1007/s00382-017-3597-x

    Google Scholar 

  61. Oh SG, Park JH, Lee SH, Suh MS (2014) Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res Atmos 119(6):2913–2927

    Article  Google Scholar 

  62. Palazzi E, Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118(1):85–100

    Article  Google Scholar 

  63. Palazzi E, von Hardenberg J, Terzago S, Provenzale A (2015) Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45(1–2):21–45

    Article  Google Scholar 

  64. Panday PK, Thibeault J, Frey KE (2015) Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections. Int J Climatol 35(10):3058–3077

    Article  Google Scholar 

  65. Pervez MS, Henebry GM (2014) Projections of the Ganges–Brahmaputra precipitation—downscaled from GCM predictors. J Hydrol 517:120–134

    Article  Google Scholar 

  66. Pranuthi G, Dubey SK, Tripathi SK, Chandniha SK (2014) Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian J Sci Technol 7(10):1573–1582

    Google Scholar 

  67. Rajbhandari R, Shrestha AB, Kulkarni A, Patwardhan SK, Bajracharya SR (2015) Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim Dyn 44(1–2):339–357

    Article  Google Scholar 

  68. Raman CRV, Rao YP (1981) Blocking highs over Asia and monsoon droughts over India. Nature 289:271–273

    Article  Google Scholar 

  69. Ramaswamy C (1962) Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams 1. Tellus 14(3):337–349

    Article  Google Scholar 

  70. Rasmussen R, Baker B, Kochendorfer J, Meyers T, Landolt S, Fischer AP, Black J, Thériault JM, Kucera P, Gochis D, Smith C, Nitu R, Hall M, Ikeda K, Gutmann E (2012) How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull Am Meteorol Soc 93(6):811–829

    Article  Google Scholar 

  71. Revadekar JV, Patwardhan SK, Rupa Kumar K (2011) Characteristic features of precipitation extremes over India in the warming scenarios. Adv Meteorol 2011:1–12

    Article  Google Scholar 

  72. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935

    Article  Google Scholar 

  73. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1–2):33–57

    Article  Google Scholar 

  74. Rupa Kumar K, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  75. Saeed F, Hagemann S, Jacob D (2012) A framework for the evaluation of the South Asian summer monsoon in a regional climate model applied to MPI-ESM-LR_REMO2009. Int J Climatol 32(3):430–440

    Article  Google Scholar 

  76. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson ULF, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63(1):4–23

    Article  Google Scholar 

  77. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  78. Şen Z, Habib Z (2000) Spatial precipitation assessment with elevation by using point cumulative semivariogram technique. Water Resour Manag 14(4):311–325

    Article  Google Scholar 

  79. Sengupta A, Rajeevan M (2013) Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr Sci 105(12):1692

    Google Scholar 

  80. Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour Manag 26(1):211–224

    Article  Google Scholar 

  81. Sharma KP, Moore Iii B, Vorosmarty CJ (2000) Anthropogenic, climatic, and hydrologic trends in the Kosi Basin, Himalaya. Clim Change 47(1–2):141–165

    Article  Google Scholar 

  82. Shashikanth K, Salvi K, Ghosh S, Rajendran K (2014) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15(2):79–85

    Article  Google Scholar 

  83. Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12(9):2775–2786

    Article  Google Scholar 

  84. Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int J Climatol 20(3):317–327

    Article  Google Scholar 

  85. Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199(1):183–206

    Article  Google Scholar 

  86. Singh P, Ramasastri KS, Naresh K (1995) Topographical influence on precipitation distribution in different ranges of western Himalayas. Nord Hydrol 26(4–5):259–284

    Google Scholar 

  87. Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with Minicam. Energy J 27:373–391

    Google Scholar 

  88. Syed FS, Iqbal W, Syed AAB, Rasul G (2014) Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change. Clim Dyn 42(7–8):2079–2097

    Article  Google Scholar 

  89. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  90. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A Math Phys Eng Sci 365(1857):2053–2075

    Article  Google Scholar 

  91. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109(1–2):77–94

    Article  Google Scholar 

  92. Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33(6):1–4

    Article  Google Scholar 

  93. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011a) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  94. Van Vuuren DP, Stehfest E, den Elzen MG, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM, Oostenrijk R (2011b) RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 degree celsius. Clim Change 109(1–2):95–116

    Article  Google Scholar 

  95. Venable NB, Fassnacht SR, Hendricks AD (2015) Spatial changes in climate across Mongolia. In: Proceedings of the trans-disciplinary research conference: Building resilience of Mongolian Rangelands, Ulaanbaatar, Mongolia, 9–10 June 2015

  96. Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour Res 43(7):1–13

    Article  Google Scholar 

  97. Vuille M, Werner M, Bradley RS, Chan RY, Keimig F (2005) Stable isotopes in East African precipitation record Indian Ocean zonal mode. Geophys Res Lett 32(21):1–5

    Article  Google Scholar 

  98. Wan H, Zhang X, Zwiers FW, Shiogama H (2013) Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. J Geophys Res Atmos 118(2):534–546

    Article  Google Scholar 

  99. Wilks DS (2011) Statistical methods in the atmospheric sciences, Vol 100. Academic press, San Diego, USA

    Google Scholar 

  100. Winiger MGHY, Gumpert M, Yamout H (2005) Karakorum–Hindukush–western Himalaya: assessing high-altitude water resources. Hydrol Process 19(12):2329–2338

    Article  Google Scholar 

  101. Wu Y, Wu SY, Wen J, Xu M, Tan J (2016) Changing characteristics of precipitation in China during 1960–2012. Int J Climatol 36(3):1387–1402

    Article  Google Scholar 

  102. Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106(52):22114–22118

    Article  Google Scholar 

  103. Yadav RK (2009) Changes in the large-scale features associated with the Indian summer monsoon in the recent decades. Int J Climatol 29(1):117–133

    Article  Google Scholar 

  104. Yadav RK (2016) On the relationship between Iran surface temperature and northwest India summer monsoon rainfall. Int J Climatol 36:4425–4438. doi:10.1002/joc.4648

    Article  Google Scholar 

  105. Yadav RK (2017) On the relationship between east equatorial Atlantic SST and ISM through Eurasian wave. Clim Dyn 48(1–2):281–295

    Article  Google Scholar 

  106. Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola 5:137–140

    Article  Google Scholar 

  107. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) Aphrodite: Constructing a long-term daily gridded pecipitation dataset of Asia based on a dense network of rain gauges. Am Meteorol Soc 93:1401–1415

    Article  Google Scholar 

  108. Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan. JAWRA J Am Water Resour Assoc 39(3):587–596

    Article  Google Scholar 

  109. Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38(3):395–429

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the junior research fellowship provided to A. Choudhary by University Grants Commission, India. The authors thank the World Climate Research Program’s Working Group on Regional Climate, the Working Group on Coupled Modelling which formerly coordinated CORDEX. Authors are grateful to the climate modeling groups (listed in Table 1) for producing and making available their model output. The authors also thank the Earth System Grid Federation (ESGF) infrastructure and the Climate Data Portal at Center for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology, India for provision of CORDEX-SA data. Also, we thank Ministry of the Environment, Japan for APHRODITE water resources project, supported by the Environment Research and Technology Development Fund. The authors are grateful to two anonymous reviewers for making important comments and suggestions in improving the manuscript. Computational and graphical analyses presented in this study are done with the softwares CDO and GrADS on a LINUX platform. Authors thank support of MoEF&CC under NMHS program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Dimri.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A., Dimri, A.P. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Clim Dyn 50, 3009–3030 (2018). https://doi.org/10.1007/s00382-017-3789-4

Download citation

Keywords

  • Monsoonal
  • Precipitation
  • RCPs
  • Himalayan region
  • CORDEX-SA
  • Precipitation change
  • Projections
  • Climatology
  • Trend
  • Uncertainty