Climate Dynamics

, Volume 50, Issue 7–8, pp 2951–2969 | Cite as

Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales

  • Alejandro Builes-Jaramillo
  • Norbert Marwan
  • Germán Poveda
  • Jürgen Kurths


We study the physical processes involved in the potential influence of Amazon (AM) hydroclimatology over the Tropical North Atlantic (TNA) Sea Surface Temperatures (SST) at interannual timescales, by analyzing time series of the precipitation index (P-E) over AM, as well as the surface atmospheric pressure gradient between both regions, and TNA SSTs. We use a recurrence joint probability based analysis that accounts for the lagged nonlinear dependency between time series, which also allows quantifying the statistical significance, based on a twin surrogates technique of the recurrence analysis. By means of such nonlinear dependence analysis we find that at interannual timescales AM hydrology influences future states of the TNA SSTs from 0 to 2 months later with a 90–95% statistical confidence. It also unveils the existence of two-way feedback mechanisms between the variables involved in the processes: (1) precipitation over AM leads the atmospheric pressure gradient between TNA and AM from 0 to 2 month lags, (2) the pressure gradient leads the trade zonal winds over the TNA from 0 to 3 months and from 7 to 12 months, (3) the zonal winds lead the SSTs from 0 to 3 months, and (4) the SSTs lead precipitation over AM by 1 month lag. The analyses were made for time series spanning from 1979 to 2008, and for extreme precipitation events in the AM during the years 1999, 2005, 2009 and 2010. We also evaluated the monthly mean conditions of the relevant variables during the extreme AM droughts of 1963, 1980, 1983, 1997, 1998, 2005, and 2010, and also during the floods of 1989, 1999, and 2009. Our results confirm that the Amazon River basin acts as a land surface–atmosphere bridge that links the Tropical Pacific and TNA SSTs at interannual timescales. The identified mutual interactions between TNA and AM are of paramount importance for a deeper understanding of AM hydroclimatology but also of a suite of oceanic and atmospheric phenomena over the TNA, including recently observed trends in SSTs, as well as future occurrences and impacts on tropical storms and hurricanes throughout the TNA region, but also on fires, droughts, deforestation and dieback of the tropical rain forest of the Amazon River basin.


Nonlinear processes Amazonia Tropical North Atlantic Hydroclimatology SST Interannual variability 



Alejandro Builes-Jaramillo was partially supported by the program “Research Grants—Short-Term Grants, 2015 (57130097)” of the Deutscher Akademischer Austauschdienst (DAAD) and by the Humboldt University of Berlin. The contribution of Norbert Marwan was supported by the Project DFG RTG 2043/1 Natural hazards and risks in a changing world. The work of G. Poveda was supported by Universidad Nacional de Colombia at Medellín, as a contribution to the AMAZALERT research programme, funded by the European Commission. Recurrence analysis was carried out with the CRP Toolbox for MATLAB developed by Norbert Marwan and available at


  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524CrossRefGoogle Scholar
  2. Amaya DJ, DeFlorio MJ, Miller AJ, Xie SP (2016) WES feedback and the Atlantic meridional mode: observations and CMIP5 comparisons. Clim Dyn. doi: 10.1007/s00382-016-3411-1 Google Scholar
  3. Arias PA, Martínez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn 45:2861–2884. doi: 10.1007/s00382-015-2511-7 CrossRefGoogle Scholar
  4. Avissar R, Werth D (2004) Global hydroclimatological teleconnections resulting from tropical deforestation. J Hydrometeorol 6:134–145CrossRefGoogle Scholar
  5. Chen Y, Randerson JT, Morton DC et al (2011) Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334:787–91. doi: 10.1126/science.1209472 CrossRefGoogle Scholar
  6. Chen Y, Randerson JT, Morton DC (2015) Tropical North Atlantic ocean–atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophys Res Lett 42:6462–6470. doi: 10.1002/2015GL064505.Received CrossRefGoogle Scholar
  7. Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J Clim 15:2616–2631. doi: 10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2 CrossRefGoogle Scholar
  8. Chung C, Nigam S, Carton J (2002) SST-forced surface wind variability in the tropical Atlantic: an empirical model. J Geophys Res 107:1–16. doi: 10.1029/2001JD000324 Google Scholar
  9. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  10. Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977. doi: 10.1209/0295-5075/4/9/004 CrossRefGoogle Scholar
  11. Enfield DB, Mayer D a (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J Geophys Res 102:929–945CrossRefGoogle Scholar
  12. Enfield DB, Mestas-Nuñez AM, Mayer D a., Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J Geophys Res 104:7841. doi: 10.1029/1998JC900109 CrossRefGoogle Scholar
  13. Fernandes K, Baethgen W, Bernardes S et al (2011) North Tropical Atlantic influence on western Amazon fire season variability. Geophys Res Lett 38:1–5. doi: 10.1029/2011GL047392 CrossRefGoogle Scholar
  14. Foltz GR, McPhaden MJ (2008) Impact of Saharan dust on tropical North Atlantic SST. J Clim 21:5048–5060. doi: 10.1175/2008JCLI2232.1 CrossRefGoogle Scholar
  15. Foltz GR, McPhaden MJ (2010) Interaction between the Atlantic meridional and Niño modes. Geophys Res Lett 37:1–5. doi: 10.1029/2010GL044001 Google Scholar
  16. Foltz GR, McPhaden MJ, Lumpkin R (2012) A strong atlantic meridional mode event in 2009: the role of mixed: layer dynamics. J Clim 25:363–380. doi: 10.1175/JCLI-D-11-00150.1 CrossRefGoogle Scholar
  17. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140. doi: 10.1103/PhysRevA.33.1134 CrossRefGoogle Scholar
  18. Fu R, Dickinson R, Chen M, Wang H (2001) How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? J Clim. doi: 10.1175/1520-0442(2001)014<4003:HDTSST>2.0.CO;2 Google Scholar
  19. Fu R, Yin L, Li W et al (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci USA 110:18110–18115. doi: 10.1073/pnas.1302584110 CrossRefGoogle Scholar
  20. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. doi: 10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  21. Gimeno L, Stohl A, Trigo RM et al (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:1–41. doi: 10.1029/2012RG000389 CrossRefGoogle Scholar
  22. Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. doi: 10.1002/grl.50377 CrossRefGoogle Scholar
  23. Goldenberg SB, Landsea CW, Mestas-Nunez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479. doi: 10.1126/science.1060040 CrossRefGoogle Scholar
  24. Good P, Lowe J a, Collins M, Moufouma-Okia W (2008) An objective tropical Atlantic sea surface temperature gradient index for studies of south Amazon dry-season climate variability and change. Philos Trans R Soc Lond B Biol Sci 363:1761–1766. doi: 10.1098/rstb.2007.0024 CrossRefGoogle Scholar
  25. Goswami B, Marwan N, Feulner G, Kurths J (2013) How do global temperature drivers influence each other?: a network perspective using recurrences. Eur Phys J Spec Top 222:861–873. doi: 10.1140/epjst/e2013-01889-8 CrossRefGoogle Scholar
  26. Ham Y-G, Kug J-S, Park J-Y, Jin F-F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116. doi: 10.1038/ngeo1686 CrossRefGoogle Scholar
  27. Kayano MT, Kousky VE (1999) Intraseasonal (30–60 day) variability in the global tropics: principal modes and their evolution. Tellus Ser A Dyn Meteorol Oceanogr 51:373–386. doi: 10.3402/tellusa.v51i3.13459 CrossRefGoogle Scholar
  28. Klotzbach PJ, Oliver ECJ (2015) Modulation of Atlantic Basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J Clim 28:204–217. doi: 10.1175/JCLI-D-14-00509.1 CrossRefGoogle Scholar
  29. Krinner G, Viovy N, de Noblet-Ducoudré N et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19:33. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  30. Lenton TM, Held H, Kriegler E et al (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793. doi: 10.1073/pnas.0705414105 CrossRefGoogle Scholar
  31. Lewis SL, Brando PM, Phillips OL et al (2011) The 2010 Amazon drought. Science 331:554. doi: 10.1126/science.1200807 CrossRefGoogle Scholar
  32. Li T, Philander SGH (1997) On the seasonal cycle of the equatorial Atlantic Ocean. J Clim 10:813–817. doi: 10.1175/1520-0442(1997)010<0813:OTSCOT>2.0.CO;2 CrossRefGoogle Scholar
  33. Marengo J (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863. doi: 10.1002/joc.3370120808 CrossRefGoogle Scholar
  34. Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050CrossRefGoogle Scholar
  35. Marengo J a., Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280. doi: 10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2 CrossRefGoogle Scholar
  36. Marengo JA, Tomasella J, Alves LM, et al (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett. doi: 10.1029/2011GL047436 Google Scholar
  37. Marwan N (2011) How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurc Chaos 21:1003–1017. doi: 10.1142/S0218127411029008 CrossRefGoogle Scholar
  38. Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett Sect A Gen At Solid State Phys 302:299–307. doi: 10.1016/S0375-9601(02)01170-2 Google Scholar
  39. Marwan N, Carmen Romano M, Thiel M, Kurths J (2007a) Recurrence plots for the analysis of complex systems. Phys Rep 438:237–329. doi: 10.1016/j.physrep.2006.11.001 CrossRefGoogle Scholar
  40. Marwan N, Kurths J, Saparin P (2007b) Generalised recurrence plot analysis for spatial data. Phys Lett Sect A Gen At Solid State Phys 360:545–551. doi: 10.1016/j.physleta.2006.08.058 Google Scholar
  41. Marwan N, Zou Y, Wessel N, et al (2013) Estimating coupling directions in the cardiorespiratory system using recurrence properties. Philos Trans A Math Phys Eng Sci 371:20110624. doi: 10.1098/rsta.2011.0624 CrossRefGoogle Scholar
  42. Mayorga E, Logsdon MG, Ballester MVR, Richey JE (2012) BA-ECO CD-06 Amazon river basin land and stream drainage direction maps. Oak Ridge Natl. Lab. Distrib. Act. Arch. Center, Oak RidgeGoogle Scholar
  43. Misra V, DiNapoli SM (2012) The observed teleconnection between the equatorial Amazon and the Intra-Americas Seas. Clim Dyn 40:2637–2649. doi: 10.1007/s00382-012-1474-1 CrossRefGoogle Scholar
  44. Mitchell TP, Wallace JM (1992) The annual cycle in equatorial convection and sea surface temperature. J Clim 5:1140–1156CrossRefGoogle Scholar
  45. Moraes-Arraut J, Nobre C, Barbosa HMJ et al (2011) Aerial rivers and lakes: looking at large scale moisture transport and its relation to Amazonia and to Subtropical rainfall in South America. J Clim 25:543–556CrossRefGoogle Scholar
  46. Nobre P, Sukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the Tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  47. Nobre CA, Obregón GO, Marengo JA et al (2009) Characteristics of Amazonian climate: main features. In: Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and global change. American Geophysical Union, Washington, DC, pp 149–162CrossRefGoogle Scholar
  48. Olden JD, Neff BD (2001) Cross-correlation bias in lag analysis of aquatic time series. Mar Biol 138:1063–1070. doi: 10.1007/s002270000517 CrossRefGoogle Scholar
  49. Packard NH, Crutchfield JP, Framer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45:712–716CrossRefGoogle Scholar
  50. Panagoulia D, Vlahogianni EI (2014) Nonlinear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates. Hydrol Process 28:2281–2292. doi: 10.1002/hyp.9802 CrossRefGoogle Scholar
  51. Poveda G, Mesa O (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean–atmospheric phenomena. J Clim 10:2690–2702CrossRefGoogle Scholar
  52. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27. doi: 10.1016/j.palaeo.2005.10.031 CrossRefGoogle Scholar
  53. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:98–118. doi: 10.1002/2013WR014087 CrossRefGoogle Scholar
  54. Proulx R, Côté P, Parrott L (2009) Multivariate recurrence plots for visualizing and quantifying the dynamics of spatially extended ecosystems. Ecol Complex 6:37–47. doi: 10.1016/j.ecocom.2008.10.003 CrossRefGoogle Scholar
  55. Romano MC, Thiel M, Kurths J, Von Bloh W (2004) Multivariate recurrence plots. Phys Lett Sect A Gen At Solid State Phys 330:214–223. doi: 10.1016/j.physleta.2004.07.066 Google Scholar
  56. Runge J, Petoukhov V, Kurths J (2014) Quantifying the strength and delay of climatic interactions: the ambiguities of cross correlation and a novel measure based on graphical models. J Clim 27:720–739. doi: 10.1175/JCLI-D-13-00159.1 CrossRefGoogle Scholar
  57. Saravanan R, Chang P (2000) Interaction between Tropical Atlantic variability and El Niño–Southern oscillation. J Clim 13:2177–2194. doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2 CrossRefGoogle Scholar
  58. Schneider U, Becker A, Finger P et al (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi: 10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  59. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  60. Steinman B a, Mann ME, Miller SK (2015) Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347:988–991. doi: 10.5061/dryad.6f576.SUPPLEMENTARY CrossRefGoogle Scholar
  61. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  62. Takens F (1981) Detecting strange attractors in turbulence. Dyn Syst Turbul Warwick 898:366–381. doi: 10.1007/bfb0091924 Google Scholar
  63. Thiel M, Romano MC, Kurths J et al (2006) Twin surrogates to test for complex synchronisation. Europhys Lett 75:535–541. doi: 10.1209/epl/i2006-10147-0 CrossRefGoogle Scholar
  64. Thiel M, Romano MC, Kurths J et al (2008) Generating surrogates from recurrences. Philos Trans A Math Phys Eng Sci 366:545–57. doi: 10.1098/rsta.2007.2109 CrossRefGoogle Scholar
  65. Trenberth K (2005) Climate: uncertainty in hurricanes and global warming. Science 308:1753–1754. doi: 10.1126/science.1112551 CrossRefGoogle Scholar
  66. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:1–4. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  67. Vera C, Baez J, Douglas M et al (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77. doi: 10.1175/BAMS-87-1-63 CrossRefGoogle Scholar
  68. Wang H, Fu R (2007) The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J Clim 20:1188–1201. doi: 10.1175/JCLI4061.1 CrossRefGoogle Scholar
  69. Wang L, Yu J-Y, Paek H (2017) Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat Commun 8:14887. doi: 10.1038/ncomms14887 CrossRefGoogle Scholar
  70. Yin L, Fu R, Zhang YF et al (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res Atmos 119:2314–2328. doi: 10.1002/2013JD021349 CrossRefGoogle Scholar
  71. Yoon J-H, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. doi: 10.1007/s00382-009-0551-6 CrossRefGoogle Scholar
  72. Zou Y, Macau EEN, Sampaio G et al (2015) Do the recent severe droughts in the Amazonia have the same period of length? Clim Dyn. doi: 10.1007/s00382-015-2768-x Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Geosciences and Environment, Facultad de MinasUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Facultad de Arquitectura e IngenieríaInstitución Universitaria Colegio Mayor de AntioquiaMedellínColombia
  3. 3.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations