Skip to main content

A warming tropical central Pacific dries the lower stratosphere

Abstract

The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer–Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992–2000 and 2001–2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992–2000 to 2001–2005.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  2. Bretherton CS, Widmann M, Dymnidov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  3. Brewer AW (1949) Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Q J R Meteorol Soc 75:351–363

    Article  Google Scholar 

  4. Brinkop S, Dameris M, Jöckel P, Garny H, Lossow S, Stiller G (2016) The millennium water vapour drop in chemistry-climate model simulations. Atmos Chem Phys 16:8125–8140

    Article  Google Scholar 

  5. Butchart N et al (2006) Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim Dyn 27:727–741

    Article  Google Scholar 

  6. Calvo N, Garcia RR, Randel WJ, Marsh DR (2010) Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340

    Article  Google Scholar 

  7. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  8. Dessler AE, Schoeberl M, Wang T, Davis S, Rosenlof K (2013) Stratospheric water vapor feedback. Proc Natl Acad Sci USA 110:18087–18091

    Article  Google Scholar 

  9. Dhomse S, Weber M, Burrows J (2008) The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos Chem Phys 8:471–480

    Article  Google Scholar 

  10. Dima IM, Wallace JM (2007) Structure of annual-mean equatorial planetary waves. J Atmos Sci 64:2862–2880

    Article  Google Scholar 

  11. Forster PMD, Shine KP (1999) Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26:3309–3312

    Article  Google Scholar 

  12. Free M, Seidel DJ, Angel JK, Lanzante J, Durre I, Peterson TC (2005) Radiosonde atmospheric temperature products for assessing climate (RATPAC): a new dataset of large-area anomaly time series. J Geophys Res 110:D22101

    Article  Google Scholar 

  13. Fu Q (2013) Bottom up in the tropics. Nat Clim Change 3:957–958

    Article  Google Scholar 

  14. Fu Q, Lin P, Solomon S, Hartmann DL (2015) Observational evidence of strengthening of the Brewer–Dobson circulation since 1980. J Geophys Res 120:10214–10228. doi:10.1002/2015JD023657

    Google Scholar 

  15. Fueglistaler S (2012) Stepwise changes in stratospheric water vapor? J Geophys Res 117:1–11

    Article  Google Scholar 

  16. Fueglistaler S, Bonazzola M, Haynes PH, Peter T (2005) Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J Geophys Res 110(D8):1–10

    Article  Google Scholar 

  17. Fueglistaler S et al (2009) The tropical tropopause layer. Rev Geophys 47:1–31

    Article  Google Scholar 

  18. Fueglistaler S et al (2013) The relation between atmospheric humidity and temperature trends for stratospheric water. J Geophys Res 118:1052–1074

    Google Scholar 

  19. Garfinkel CI, Hurwitz MM, Oman LD, Waugh DW (2013a) Contrasting effects of Central Pacific and Eastern Pacific El Niño on stratospheric water vapor. Geophys Res Lett 40:4115–4120

    Article  Google Scholar 

  20. Garfinkel CI, Waugh DW, Oman LD, Wang L, Hurwitz MM (2013b) Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J Geophys Res 118:9658–9672

    Google Scholar 

  21. Gill AE (1980) Some simple solutions for heat induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  22. Grise KM, Thompson DWJ (2012) Equatorial planetary waves and their signature in atmospheric variability. J Atmos Sci 69:857–874

    Article  Google Scholar 

  23. Grise KM, Thompson DWJ (2013) On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J Atmos Sci 70:1084–1102

    Article  Google Scholar 

  24. Hegglin MI et al (2014) Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat Geosci 7:768–776

    Article  Google Scholar 

  25. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  26. Highwood EJ, Hoskins BJ (1998) The tropical tropopause. Q J R Meteorol Soc 124:1579–1604

    Article  Google Scholar 

  27. Holton JR et al (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  28. Jones A et al (2009) Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos Chem Phys 9:6055–6075

    Article  Google Scholar 

  29. Kawatani Y, Hamilton K (2013) Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 497:478–481

    Article  Google Scholar 

  30. Kim J-E, Alexander MJ (2015) Direct impacts of waves on tropical cold point tropopause temperature. Geophys Res Lett 42:1584–1592

    Article  Google Scholar 

  31. Kumar V et al (2014) Impact of quasi-biennial oscillation on the inter-annual variability of the tropopause height and temperature in the tropics: a study using COSMIC/FORMOSAT-3 observations. Atmos Res 139:62–70

    Article  Google Scholar 

  32. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  33. Lin P, Fu Q (2013) Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J Geophys Res 118:73–84. doi:10.1029/2012JD018813

    Google Scholar 

  34. Oman L, Waugh DW, Pawson S, Stolarski RS, Nielsen JE (2008) Understanding the changes of stratospheric water vapor in coupled chemistry-climate model simulations. J Atmos Sci 65:3278–3291

    Article  Google Scholar 

  35. Randel WJ, Jensen E (2013) Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat Geosci 6:169–176

    Article  Google Scholar 

  36. Randel WJ, Wu F, Russell JM III, Roche A, Waters J (1998) Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J Atmos Sci 55:163–185

    Article  Google Scholar 

  37. Randel WJ, Wu F, Oltmans S, Rosenlof K, Nedoluha G (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61:2133–2148

    Article  Google Scholar 

  38. Randel WJ, Wu F, Vömel H, Nedoluha G, Forster P (2006) Decreases in stratospheric water vapor after 2001: links to changes in the tropical tropopause and the Brewer–Dobson circulation. J Geophys Res 111:1–11

    Google Scholar 

  39. Read WG, Wu DL, Waters JW, Pumphrey HC (2004) A new 147–56 hPa water vapor product from the UARS microwave limb sounder. J Geophys Res 109:1–11

    Google Scholar 

  40. Remsberg EE, Bhatt PP, Russell JM III (1996) Estimates of the water vapor budget of the stratosphere from UARS HALOE data. J Geophys Res 101:6749–6766

    Article  Google Scholar 

  41. Roeckner E et al (2003) The atmospheric general circulation model EHCAM5. Part I: model description, Report No. 349. Max-Planck-Institut fur Meteorologie, Hamburg, p 127

  42. Rosenlof KH (1995) Seasonal cycle of the residual mean meridional circulation in the stratosphere. J Geophys Res 100:5173–5191

    Article  Google Scholar 

  43. Rosenlof K, Reid G (2008) Trends in the temperature and water vapor content of the tropical lower stratosphere: sea surface connection. J Geophys Res 113:1–15

    Article  Google Scholar 

  44. Scaife AA, Butchart N, Jackson DR, Swinbank R (2003) Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys Res Lett 30:1880

    Article  Google Scholar 

  45. Schoeberl MR, Dessler AE (2011) Dehydration of the stratosphere. Atmos Chem Phys 11:8433–8446

    Article  Google Scholar 

  46. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  47. Solomon S et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  48. Urban J, Lossow S, Stiller G, Read W (2014) Another drop in water vapor. Eos Trans AGU 95:245

    Article  Google Scholar 

  49. Virts KS, Wallace JM (2010) Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J Atmos Sci 67:3097–3112

    Article  Google Scholar 

  50. Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:561–576

    Article  Google Scholar 

  51. Wallace JM, Panetta L, Estberg J (1993) A phase-space representation of the equatorial stratospheric quasi-biennial oscillation. J Atmos Sci 50:1751–1762

    Article  Google Scholar 

  52. Wang T, Dessler AE, Schoeberl MR, Randel WJ, Kim JE (2015) The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor. Atmos Chem Phys 15:3517–3526

    Article  Google Scholar 

  53. Xie F, Li JP, Tian WS, Li YJ, Feng J (2014) Indo-Pacific warm pool area expansion, modoki activity, and tropical cold-point tropopause temperature variations. Sci Rep 4:4552. doi:10.1038/srep04552

    Article  Google Scholar 

  54. Yulaeva E, Holton JR, Wallace JM (1994) On the cause of the annual cycle in tropical lower-stratospheric temperatures. J Atmos Sci 51:169–174

    Article  Google Scholar 

  55. Zhou X, Li JP, Xie F, Ding RQ, Li YJ, Zhao S, Zhang JK, Li Y (2017) The effects of the Indo-Pacific warm pool on the stratosphere. Clim Dyn. doi:10.1007/s00382-017-3584-2

    Google Scholar 

  56. Zou CZ et al (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J Geophys Res 111:D19114

    Article  Google Scholar 

Download references

Acknowledgements

We thank Profs. J. M. Wallace and Dr. S. Po-Chedley for helpful discussions and comments on the manuscript. We thank the Max Planck Institute for Meteorology for making the ECHAM5 available. This work was supported by NASA Grants NNX13AN49G and NNX16AO95G. Q. Ding is grateful for funding from the National Science Foundation through grant NSF PLR 1443144.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qinghua Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Fu, Q. A warming tropical central Pacific dries the lower stratosphere. Clim Dyn 50, 2813–2827 (2018). https://doi.org/10.1007/s00382-017-3774-y

Download citation

Keywords

  • Troposphere–stratosphere interaction
  • Tropical central Pacific SST
  • Stratospheric water vapor change
  • Interdecadal variability