Climate Dynamics

, Volume 50, Issue 7–8, pp 2767–2782 | Cite as

The 9.2 ka event in Asian summer monsoon area: the strongest millennial scale collapse of the monsoon during the Holocene

  • Wenchao Zhang
  • Hong YanEmail author
  • John Dodson
  • Peng Cheng
  • Chengcheng Liu
  • Jianyong Li
  • Fengyan Lu
  • Weijian Zhou
  • Zhisheng An


Numerous Holocene paleo-proxy records exhibit a series of centennial-millennial scale rapid climatic events. Unlike the widely acknowledged 8.2 ka climate anomaly, the likelihood of a significant climate excursion at around 9.2 cal ka BP, which has been notably recognized in some studies, remains to be fully clarified in terms of its magnitude and intensity, as well as its characteristics and spatial distributions in a range of paleoclimatic records. In this study, a peat sediment profile from the Dajiuhu Basin in central China was collected with several geochemical proxies and a pollen analysis carried out to help improve understanding of the climate changes around 9.2 cal ka BP. The results show that the peat development was interrupted abruptly at around 9.2 cal ka BP, when the chemical weathering strength decreased and the tree-pollen declined. This suggests that a strong drier regional climatic event occurred at around 9.2 cal ka BP in central China, which was, in turn, probably connected to the rapid 9.2 ka climate event co-developing worldwide. In addition, based on the synthesis of our peat records and the other Holocene hydrological records from Asian summer monsoon (ASM) region, we further found that the 9.2 ka event probably constituted the strongest abrupt collapse of the Asian monsoon system during the full Holocene interval. The correlations between ASM and the atmospheric 14C production rate, the North Atlantic drift ice records and Greenland temperature indicated that the weakened ASM event at around 9.2 cal ka BP could be interpreted by the co-influence of external and internal factors, related to the changes of the solar activity and the Atlantic Meridional Overturning Circulation (AMOC).


Dajiuhu peat Central China Paleoclimate records Abrupt climate changes 9.2 ka BP event Weak Asian summer monsoon 



Financial support for this research was provided by the National Natural Science Foundation of China (NSFC) (41522305, 41403018) and the research Projects from Chinese Academy of Sciences (QYZDB-SSW-DQC001 and 132B61KYSB20160003) and Qingdao National Laboratory for Marine Science and Technology of China (QNLM2016ORP0202). We wish to thank Willie Soon, Hanyang Lijiang and Jun Yang for their help in sampling and paper polishing.


  1. Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149. doi: 10.1016/j.quascirev.2004.12.004 CrossRefGoogle Scholar
  2. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 year ago. Geology 25:483–486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2 CrossRefGoogle Scholar
  3. An Z et al (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep 2:619. doi: 10.1038/srep00619 CrossRefGoogle Scholar
  4. Anderson DE (1998) A reconstruction of Holocene climatic changes from peat bogs in north-west Scotland. Boreas 27:208–224. doi: 10.1111/j.1502-3885.1998.tb00880.x CrossRefGoogle Scholar
  5. Andrews JT, Smith LM, Preston R, Cooper T, Jennings AE (1997) Spatial and temporal patterns of iceberg rafting (IRD) along the East Greenland margin, ca. 68°N, over the last 14 cal ka. J Quat Sci 12:1–13. doi: 10.1002/(SICI)1099-1417(199701/02)12:1<1::AID-JQS288>3.0.CO;2-T CrossRefGoogle Scholar
  6. Axford Y, Briner JP, Miller GH, Francis DR (2009) Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quat Res 71:142–149. doi: 10.1016/j.yqres.2008.09.006 CrossRefGoogle Scholar
  7. Barber DC et al (1999) Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348. doi: 10.1038/22504 CrossRefGoogle Scholar
  8. Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–686. doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2 CrossRefGoogle Scholar
  9. Bond G et al (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266. doi: 10.1126/science.278.5341.1257 CrossRefGoogle Scholar
  10. Bond G et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136. doi: 10.1126/science.1065680 CrossRefGoogle Scholar
  11. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  12. Bügelmayer-Blaschek M, Roche DM, Renssen H, Andrews JT (2016) Internal ice-sheet variability as source for the multi-century and millennial-scale iceberg events during the Holocene? A model study. Quat Sci Rev 138:119–130. doi: 10.1016/j.quascirev.2016.01.026 CrossRefGoogle Scholar
  13. Burrows M, Heijnis H, Gadd P, Haberle S (2016) A new late Quaternary palaeohydrological record from the humid tropics of northeastern Australia. Palaeogeogr, Palaeoclimatol, Palaeoecol 451:164–182. doi: 10.1016/j.palaeo.2016.03.003 CrossRefGoogle Scholar
  14. Chai X (1990) Peat Geoscience (in Chinese). Geological Publishing House, BeijingGoogle Scholar
  15. Chambers FM, Charman DJ (2004) Holocene environmental change: contributions from the peatland archive. Holocene 14:1–6. doi: 10.1191/0959683604hl684ed CrossRefGoogle Scholar
  16. Chambers FM, Barber KE, Maddy D, Brew J (1997) A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. Holocene 7:391–399. doi: 10.1177/095968369700700402 CrossRefGoogle Scholar
  17. Chen F, Zhu Y, Li J, Shi Q, Jin L, Wünemann B (2001) Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull 46:1942–1947. doi: 10.1007/BF02901902 CrossRefGoogle Scholar
  18. Chen F et al (2015) East Asian summer monsoon precipitation variability since the last deglaciation. Sci Rep 5:1–11. doi: 10.1038/srep11186 Google Scholar
  19. Cheng H, Sinha A, Wang X, Cruz FW, Edwards RL (2012) The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn 39:1045–1062. doi: 10.1007/s00382-012-1363-7 CrossRefGoogle Scholar
  20. Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496. doi: 10.1007/s00382-005-0040-5 CrossRefGoogle Scholar
  21. Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869. doi: 10.1038/415863a CrossRefGoogle Scholar
  22. Dahl KA, Broccoli AJ, Stouffer RJ (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346. doi: 10.1007/s00382-004-0499-5 CrossRefGoogle Scholar
  23. Damon PE, Peristykh AN (2000) Radiocarbon calibration and application to geophysics, solar physics, and astrophysics. Radiocarbon 42:137–150. doi: 10.1017/S0033822200053108 CrossRefGoogle Scholar
  24. Dixit Y, Hodell DA, Sinha R, Petrie CA (2014) Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet Sci Lett 391:16–23. doi: 10.1016/j.epsl.2014.01.026 CrossRefGoogle Scholar
  25. Dong J et al (2010) A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. Holocene 20:257–264. doi: 10.1177/0959683609350393 CrossRefGoogle Scholar
  26. Dykoski CA et al (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86. doi: 10.1016/j.epsl.2005.01.036 CrossRefGoogle Scholar
  27. Dykoski CA, Edwards RL, Cheng H, Yuan D, Shen R (2008) Asian monsoon millennial-scale variability during the last glacial period and its links to North Atlantic climate. In: American Geophysical Union, Fall MeetingGoogle Scholar
  28. Ellison CRW, Chapman MR, Hall IR (2006) Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312:1929–1932. doi: 10.1126/science.1127213 CrossRefGoogle Scholar
  29. EPA U (2001) Method 200.7, Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-Mass Spectrometry vol Revision 5.0, EPA-821-R-01-010. Office of Research and Development, Cincinatti, OhioGoogle Scholar
  30. Ferrat M, Weiss DJ, Spiro B, Large D (2012) The inorganic geochemistry of a peat deposit on the eastern Qinghai-Tibetan Plateau and insights into changing atmospheric circulation in central Asia during the Holocene. Geochim Cosmochim Acta 91:7–31. doi: 10.1016/j.gca.2012.05.028 CrossRefGoogle Scholar
  31. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739. doi: 10.1126/science.1083130 CrossRefGoogle Scholar
  32. Fleitmann D et al (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188. doi: 10.1016/j.quascirev.2006.04.012 CrossRefGoogle Scholar
  33. Fleitmann D, Mudelsee M, Burns SJ, Bradley RS, Kramers J, Matter A (2008) Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23:PA1102. doi: 10.1029/2007PA001519 CrossRefGoogle Scholar
  34. Gibbs MT, Kump LR (1994) Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography 9:529–543. doi: 10.1029/94PA01009 CrossRefGoogle Scholar
  35. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357. doi: 10.1038/nature01340 CrossRefGoogle Scholar
  36. Gupta AK, Das M, Anderson DM (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32:L17703. doi: 10.1029/2005GL022685 CrossRefGoogle Scholar
  37. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308. doi: 10.1126/science.1059725 CrossRefGoogle Scholar
  38. He Y, Zhao C, Zheng Z, Liu Z, Wang N, Li J, Cheddadi R (2015) Peatland evolution and associated environmental changes in central China over the past 40,000 years. Quat Res 84:255–261. doi: 10.1016/j.yqres.2015.06.004 CrossRefGoogle Scholar
  39. Horák-Terra I, Cortizas AM, da Luz CFP, López PR, Silva AC, Vidal-Torrado P (2015) Holocene climate change in central-eastern Brazil reconstructed using pollen and geochemical records of Pau de Fruta mire (Serra do Espinhaço Meridional, Minas Gerais). Palaeogeogr Palaeoclimatol Palaeoecol 437:117–131. doi: 10.1016/j.palaeo.2015.07.027 CrossRefGoogle Scholar
  40. Hou J, Huang Y, Shuman BN, Oswald WW, Foster DR (2012) Abrupt cooling repeatedly punctuated early-Holocene climate in eastern North America. Holocene 22:525–529. doi: 10.1177/0959683611427329 CrossRefGoogle Scholar
  41. Hu F et al (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893. doi: 10.1126/science.1088568 CrossRefGoogle Scholar
  42. Hu C, Henderson GM, Huang J, Xie S, Sun Y, Johnson KR (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett 266:221–232. doi: 10.1016/j.epsl.2007.10.015 CrossRefGoogle Scholar
  43. Huang X (2009) Early diagenesis of peat lipids and their responses to the climate changes over the past 13 ka: evidence from the Dajiuhu peat deposit, South China. China University of Geosciences (Wuhan)Google Scholar
  44. ISO (1995) Soil quality: determination of organic and total carbon after dry combustion (elementary analysis). ISOGoogle Scholar
  45. Isono D, Yamamoto M, Irino T, Oba T, Murayama M, Nakamura T, Kawahata H (2009) The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology 37:591–594. doi: 10.1130/G25667A.1 CrossRefGoogle Scholar
  46. Jia G et al (2015) Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China. Quat Sci Rev 111:51–61. doi: 10.1016/j.quascirev.2015.01.002 CrossRefGoogle Scholar
  47. Jin Z, Wang S, Shen J, Zhang E, Li F, Ji J, Lu X (2001) Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf Proc Land 26:775–782. doi: 10.1002/esp.224 CrossRefGoogle Scholar
  48. Jin Z, Shen J, Wang S, Zhang E (2003) Evidence for early Holocene cold event from lake sediments. Geol J China Univ 9:11–18Google Scholar
  49. Jin Z, Wu J, Cao J, Wang S, Shen J, Gao N, Zou C (2004) Holocene chemical weathering and climatic oscillations in north China: evidence from lacustrine sediments. Boreas 33:260–266CrossRefGoogle Scholar
  50. Jin Z, Cao J, Wu J, Wang S (2006) A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surf Proc Land 31:285–291. doi: 10.1002/esp.1243 CrossRefGoogle Scholar
  51. Johnsen SJ et al (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307. doi: 10.1002/jqs.622 CrossRefGoogle Scholar
  52. Kleiven HK, Kissel C, Laj C, Ninnemann US, Richter TO, Cortijo E (2008) Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science 319:60. doi: 10.1126/science.1148924 CrossRefGoogle Scholar
  53. Knaap WOVD et al (2011) A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quat Sci Rev 30:3467–3480. doi: 10.1016/j.quascirev.2011.06.017 CrossRefGoogle Scholar
  54. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake-the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320. doi: 10.1023/A:1026080712312 CrossRefGoogle Scholar
  55. Korhola A, Vasko K, Toivonen HTT, Olander H (2002) Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quat Sci Rev 21:1841–1860. doi: 10.1016/S0277-3791(02)00003-3 CrossRefGoogle Scholar
  56. Kylander ME, Bindler R, Cortizas AM, Gallagher K, Mörth CM, Rauch S (2013) A novel geochemical approach to paleorecords of dust deposition and effective humidity: 8500 years of peat accumulation at Store Mosse (the “Great Bog”), Sweden. Quat Sci Rev 69:69–82. doi: 10.1016/j.quascirev.2013.02.010 CrossRefGoogle Scholar
  57. Lang B, Bedford A, Brooks SJ, Jones RT, Richardson N, Birks HJB, Marshall JD (2010) Early-Holocene temperature variability inferred from chironomid assemblages at Hawes Water, northwest England. Holocene 20:943–954. doi: 10.1177/0959683610366157 CrossRefGoogle Scholar
  58. Li J et al (2013) Vegetation changes during the past 40,000 years in Central China from a long fossil record. Quatern Int 310:221–226. doi: 10.1016/j.quaint.2012.01.009 CrossRefGoogle Scholar
  59. Liu J, Wang B, Ding Q, Kuang X, Soon W, Zorita E (2009) Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J Climate 22:2356–2371. doi: 10.1175/2008JCLI2353.1 CrossRefGoogle Scholar
  60. Liu Z et al (2014) Chinese cave records and the East Asia Summer Monsoon. Quat Sci Rev 83:115–128. doi: 10.1016/j.quascirev.2013.10.021 CrossRefGoogle Scholar
  61. Liu Y, Henderson GM, Hu C, Mason AJ, Charnley N, Johnson KR, Xie S (2013) Links between the East Asian monsoon and North Atlantic climate during the 8200 year event. Nat Geosci 6:117–120. doi: 10.1038/ngeo1708
  62. Ma C et al (2008) High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia Mountains, Central China. Chin Sci Bull 53:28–41. doi: 10.1007/s11434-008-5007-6
  63. Ma C, Zhu C, Zheng C, Yin Q, Zhao Z (2009) Climate changes in East China since the Late-glacial inferred from high-resolution mountain peat humification records. Sci China Ser D 52:118–131. doi: 10.1007/s11430-009-0003-5
  64. Mayewski PA et al (2004) Holocene climate variability. Quat Res 62:243–255. doi: 10.1016/j.yqres.2004.07.001
  65. Mcdermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294:1328–1331. doi: 10.1126/science.1063678 CrossRefGoogle Scholar
  66. Meehl GA (1994) Influence of the land surface in the Asian summer monsoon: external conditions versus internal feedbacks. J Climate 7:1033–1049. doi: 10.1175/1520-0442(1994)007<1033:IOTLSI>2.0.CO;2 CrossRefGoogle Scholar
  67. Moore PD, Webb JA, Collison ME (1991) Pollen analysis. Blackwell Scientific PublicationsGoogle Scholar
  68. Moros M, Andrews JT, Eberl DD, Jansen E (2006) The Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes. Paleoceanography 21:PA2017. doi: 10.1029/2005PA001214 CrossRefGoogle Scholar
  69. Muscheler R et al (2004) Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet Sci Lett 219:325–340. doi: 10.1016/S0012-821X(03)00722-2 CrossRefGoogle Scholar
  70. Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293. doi: 10.1038/35077048 CrossRefGoogle Scholar
  71. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717. doi: 10.1038/299715a0 CrossRefGoogle Scholar
  72. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336. doi: 10.2307/1310735 CrossRefGoogle Scholar
  73. Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian Monsoon over the last 18,000 years. Clim Dyn 12:213–225. doi: 10.1007/BF00211619
  74. Owen RA, Day CC, Hu C, Liu Y, Pointing MD, Blättler CL, Henderson GM (2016) Calcium isotopes in caves as a proxy for aridity: Modern calibration and application to the 8.2 kyr event. Earth Planet Sci Lett 443:129–138. doi: 10.1016/j.epsl.2016.03.027 CrossRefGoogle Scholar
  75. Parker AG, Goudie AS, Stokes S, White K, Hodson MJ, Manning M, Kennet D (2006) A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quat Res 66:465–476. doi: 10.1016/j.yqres.2006.07.001
  76. Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480. doi: 10.1038/ngeo1169 CrossRefGoogle Scholar
  77. Pross J et al (2009) Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37:887–890. doi: 10.1130/g25739a.1 CrossRefGoogle Scholar
  78. Raj R, Chamyal LS, Prasad V, Sharma A, Tripathi JK, Verma P (2015) Holocene climatic fluctuations in the Gujarat Alluvial Plains based on a multiproxy study of the Pariyaj Lake archive, western India. Palaeogeogr Palaeoclimatol Palaeoecol 421:60–74. doi: 10.1016/j.palaeo.2015.01.004 CrossRefGoogle Scholar
  79. Rasmussen SO et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. doi: 10.1029/2005JD006079 CrossRefGoogle Scholar
  80. Rasmussen SO, Vinther BM, Clausen HB, Andersen KK (2007) Early Holocene climate oscillations recorded in three Greenland ice cores. Quat Sci Rev 26:1907–1914. doi: 10.1016/j.quascirev.2007.06.015
  81. Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  82. Risebrobakken B, Jansen E, Andersson C, Mjelde E, Hevrøy K (2003) A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18:123–126. doi: 10.1029/2002PA000764 CrossRefGoogle Scholar
  83. Schulz M, Paul A (2002) Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. In: Climate development and history of the North Atlantic realm. Springer, pp 41–54Google Scholar
  84. Shao X, Wang Y, Cheng H, Kong X, Wu J, Edwards RL (2006) Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in Central China. Chin Sci Bull 51:221–228. doi: 10.1007/s11434-005-0882-6
  85. Soon W et al (2014) A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth Sci Rev 134:1–15. doi: 10.1016/j.earscirev.2014.03.003 CrossRefGoogle Scholar
  86. Spurk M, Leuschner HH, Baillie MGL, Briffa KR, Friedrich M (2002) Depositional frequency of German subfossil oaks: Climatically and non-climatically induced fluctuations in the Holocene. Holocene 12:707–715. doi: 10.1191/0959683602hl583rp CrossRefGoogle Scholar
  87. Stager JC, Mayewski PA (1997) Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276:1834–1836. doi: 10.1126/science.276.5320.1834 CrossRefGoogle Scholar
  88. Strikis NM et al (2012) Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology 39:1075–1078. doi: 10.1130/G32098.1 CrossRefGoogle Scholar
  89. Vinther BM et al (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res 111:D13102. doi: 10.1029/2005jd006921 CrossRefGoogle Scholar
  90. Wang N, Yao T, Thompson L, Henderson K, Davis M (2002) Evidence for cold events in the early Holocene from the Guliya ice core, Tibetan Plateau, China. Chin Sci Bull 47:1422–1427CrossRefGoogle Scholar
  91. Wang Y et al (2005) The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308:854–857. doi: 10.1126/science.1106296 CrossRefGoogle Scholar
  92. Wang Y et al (2008) Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093. doi: 10.1038/nature06692 CrossRefGoogle Scholar
  93. Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30:3109–3123. doi: 10.1016/j.quascirev.2011.07.010 CrossRefGoogle Scholar
  94. Wu J, Wang S, Wang H (1995) Characters of the evolution of climate and environment of Holocene in Aibi Lake basin in Xinjiang. Oceanol Limnol Sin 27:524–536Google Scholar
  95. Xue J, Zhong W, Xie L, Unkel I (2015) Vegetation responses to the last glacial and early Holocene environmental changes in the northern Leizhou Peninsula, south China. Quat Res 84:223–231. doi: 10.1016/j.yqres.2015.08.001
  96. Yan H et al (2015) Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nat Geosci 8:315–320. doi: 10.1038/ngeo2375
  97. Yu Y et al (2006) Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 233:149–162. doi: 10.1016/j.palaeo.2005.09.008 CrossRefGoogle Scholar
  98. Yu L, Gao Y, Wang H, Guo D, Li S (2009) The responses of East Asian Summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced freshwater input simulation. Chin Sci Bull 54:4724–4732. doi: 10.1007/s11434-009-0720-3
  99. Zhang P et al (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942. doi: 10.1126/science.1163965 CrossRefGoogle Scholar
  100. Zhang W et al (2016) Peatland development and climate changes in the Dajiuhu basin, central China, over the last 14,100 years. Quatern Int 425:273–281. doi: 10.1016/j.quaint.2016.06.039 CrossRefGoogle Scholar
  101. Zhou J, Wang S, Yang G, Xiao H (2007) Younger Dryas event and cold events in early-mid Holocene: record from the sediment of Erhai Lake. Adv Clim Change Res 3:41–44Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Interdisciplinary Research Center of Earth Science Frontier (IRCESF) and Joint Center for Global Change Studies (JCGCS)Beijing Normal UniverstityBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations