Advertisement

Climate Dynamics

, Volume 50, Issue 7–8, pp 2661–2672 | Cite as

Simulating seasonal tropical cyclone intensities at landfall along the South China coast

  • Charlie C. F. Lok
  • Johnny C. L. Chan
Article

Abstract

A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

Keywords

Tropical cyclone landfall Tropical cyclone intensity Downscaling Regional climate model WRF East Asia 

Notes

Acknowledgements

We would like to thank Dr. Phil Klotzbach and another anonymous reviewer for their thoughtful comments on this manuscript. This paper is part of the PhD project of the first author. It is supported by a Research Studentship from the City University of Hong Kong and Research Grants Council General Research Fund CityU 100113.

References

  1. Anderson JL (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J Clim 9(7):1518–1530CrossRefGoogle Scholar
  2. Au-Yeung AYM, Chan JCL (2012) Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the Western North Pacific. Clim Dyn 39(3–4):783–794CrossRefGoogle Scholar
  3. Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012) Regional climate model applications on sub-regional scales over the indian monsoon region: the role of domain size on downscaling uncertainty. J Geophys Res D117(10):D10,113Google Scholar
  4. Camargo SJ, Sobel AH (2005) Western North Pacific tropical cyclone intensity and ENSO. J Clim 18(15):2996–3006CrossRefGoogle Scholar
  5. Chan JCL (1985) Tropical cyclone activity in the Northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon Weather Rev 113(4):599–606CrossRefGoogle Scholar
  6. Chan JCL (2000) Tropical cyclone activity over the Western North Pacific associated with El Niño and La Niña events. J Clim 13(16):2960–2972CrossRefGoogle Scholar
  7. Chan JCL, Gray WM (1982) Tropical cyclone movement and surrounding flow relationships. Mon Weather Rev 110(10):1354–1374CrossRefGoogle Scholar
  8. Chan JCL, Xu M (2009) Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: time series analysis. Int J Climatol 29(9):1285–1293CrossRefGoogle Scholar
  9. Chan JCL, Shi JE, Lam CM (1998) Seasonal forecasting of tropical cyclone activity over the Western North Pacific and the South China Sea. Weather Forecast 13(4):997–1004CrossRefGoogle Scholar
  10. Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33(24):L24,709CrossRefGoogle Scholar
  11. Chu JH, Sampson CR, Levine AS, Edward F (2002) The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Report, Joint Typhoon Warning Center, Pearl Harbor (United States). http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html. Accessed 15 July 2016
  12. Davidson NE, Kar SK (2002) Upper-tropospheric flow transitions during rapid tropical cyclone intensification. Q J R Meteorol Soc 128(581):861–891CrossRefGoogle Scholar
  13. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR Community Climate Model. Technical Note TN-275+STR, National Center for Atmospheric Research, Boulder, Colorado (United States). https://opensky.ucar.edu/islandora/object/technotes:383/datastream/PDF/view.  Accessed 15 July 2016
  14. Emanuel KA, Živković Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782CrossRefGoogle Scholar
  15. Ferrier BS, Jin Y, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP eta model. In: 19th conference on weather analysis and forecasting/15th conference on numerical weather prediction, American Meteorology Society, San Antonio (United States)Google Scholar
  16. Fierro AO, Rogers RF, Marks FD, Nolan DS (2009) The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the wrf-arw model. Mon Weather Rev 137(11):3717–3743CrossRefGoogle Scholar
  17. Gallus WA, Bresch JF (2006) Comparison of impacts of WRF dynamic core, physics package, and initial conditions on warm season rainfall forecasts. Mon Weather Rev 134(9):2632–2641CrossRefGoogle Scholar
  18. Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Rev 138(3):688–704CrossRefGoogle Scholar
  19. Hamill TM (2001) Interpretation of rank histograms for verifying ensemble forecasts. Mon Weather Rev 129(3):550–560CrossRefGoogle Scholar
  20. Ho CH, Kim HS, Jeong JH, Son SW (2009) Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the Western North Pacific. Geophys Res Lett 36(6):L06,702CrossRefGoogle Scholar
  21. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575CrossRefGoogle Scholar
  22. Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme. J Korean Meteorol Soc 42(2):129–151Google Scholar
  23. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341CrossRefGoogle Scholar
  24. Hong SY, Lim KSS, Kim JH, Lim JOJ, Dudhia J (2009) Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J Appl Meteorol Climatol 48(1):61–76CrossRefGoogle Scholar
  25. Huang WR, Chan JCL (2014) Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall. Clim Dyn 42(7):2227–2237CrossRefGoogle Scholar
  26. Huang WR, Chan JCL, Au-Yeung AYM (2013) Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40(7):1625–1642CrossRefGoogle Scholar
  27. Jin CS, Ho CH, Kim JH, Lee DK, Cha DH, Yeh SW (2012) Critical role of northern off-equatorial sea surface temperature forcing associated with Central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J Clim 26(8):2534–2545CrossRefGoogle Scholar
  28. Jin H, Peng MS, Jin Y, Doyle JD (2014) An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Weather Forecast 29(2):252–270CrossRefGoogle Scholar
  29. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181CrossRefGoogle Scholar
  30. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). Technical Note TN-420+STR, National Center for Atmospheric Research, Boulder, Colorado (United States). https://opensky.ucar.edu/islandora/object/technotes:187/datastream/PDF/view. Accessed 15 July 2016
  31. Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull Am Meteorol Soc 88(10):1549–1565CrossRefGoogle Scholar
  32. Knutson TR, McBride JL, Chan JCL, Emanuel KA, Holland GJ, Landsea C, Held IM, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163CrossRefGoogle Scholar
  33. Lander MA (1996) Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the Western North Pacific. Weather Forecast 11(2):170–186CrossRefGoogle Scholar
  34. Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the Southwestern Indian Ocean. J Clim 18(8):1263–1274CrossRefGoogle Scholar
  35. Liu KS, Chan JCL (2017) Variations in the power dissipation index in the East Asia Region. Clim Dyn 48(5):1963–1985CrossRefGoogle Scholar
  36. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682CrossRefGoogle Scholar
  37. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofizicheskogo Instituta Akademiya Nauk SSSR 24(151):163–187Google Scholar
  38. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29,579–29,594CrossRefGoogle Scholar
  39. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409CrossRefGoogle Scholar
  40. Parker CL, Lynch AH, Arbetter TE (2013) Evaluating WRF-ARW v3.4.1 simulations of Tropical Cyclone Yasi. In: 14th annual WRF Users’ Workshop, National Center for Atmospheric Research, Boulder (United States). http://www2.mmm.ucar.edu/wrf/users/workshops/WS2013/extended_abstracts/7B.6.pdf. Accessed 15 July 2016
  41. Qian YK, Liang CX, Yuan Z, Peng S, Wu J, Wang S (2016) Upper-tropospheric environment-tropical cyclone interactions over the western North Pacific: a statistical study. Adv Atmos Sci 33(5):614–631CrossRefGoogle Scholar
  42. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057CrossRefGoogle Scholar
  43. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Hy Chuang, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The ncep climate forecast system version 2. J Clim 27(6):2185–2208CrossRefGoogle Scholar
  44. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JGa (2008) A description of the advanced research WRF version 3. Technical Note TN-475+STR, National Center for Atmospheric Research, Boulder, Colorado (United States). https://opensky.ucar.edu/islandora/object/technotes:500/datastream/PDF/view. Accessed 15 July 2016
  45. Stowasser M, Wang Y, Hamilton K (2007) Tropical cyclone changes in the Western North Pacific in a global warming scenario. J Clim 20(11):2378–2396CrossRefGoogle Scholar
  46. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800CrossRefGoogle Scholar
  47. Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  48. Vitart F, Stockdale TN (2001) Seasonal forecasting of tropical storms using coupled GCM integrations. Mon Weather Rev 129(10):2521–2537CrossRefGoogle Scholar
  49. Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the Western North Pacific. J Clim 15(13):1643–1658CrossRefGoogle Scholar
  50. Wang C, Wu L (2016) Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific. J Clim 29(11):4203–4211CrossRefGoogle Scholar
  51. Watterson IG, Evans JL, Ryan BF (1995) Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J Clim 8(12):3052–3066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Energy and EnvironmentCity University of Hong KongKowloon TongHong Kong

Personalised recommendations