Skip to main content

Advertisement

Log in

The epistemological status of general circulation models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232

    Article  Google Scholar 

  • Anagnostopoulos GG, Koutsoyiannis D, Christofides A, Efstratiadis A, Mamassis N (2010) A comparison of local and aggregated climate model outputs with observed data. Hydrol Sci J 55:1094–1110

    Article  Google Scholar 

  • Andersson ME, Verronen PT, Rodger CJ, Clilverd MA, Seppälä A (2014) Missing driver in the sun-earth connection from energetic electron precipitation impacts mesospheric zone. Nat Commun 5:5197

    Article  Google Scholar 

  • Bakker P, Renssen H (2014) Last interglacial model-data mismatch of thermal maximum temperatures partially explained. Clim Past 10:1633–1644

    Article  Google Scholar 

  • Bakker P, Masson-Delmotte V, Martrat B, Charbit S, Renssen H, Groeger M, Krebs-Kanzow U, Lohman G, Lunt DL, Pfeiffer M, Phipps SJ, Prange M, Ritz SP, Schulz M, Stenni B, Stone EJ, Varma V (2014) Temperature trends during the present and last interglacial periods—a multi-model-data comparison. Quat Sci Rev 99:224–243

    Article  Google Scholar 

  • Bloch-Johnson J, Pierrehumbert RT, Abbot DS (2015) Feedback temperature dependence determines the risk of high warming. Geophys Res Lett 42:4973–4980

    Article  Google Scholar 

  • Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8:261–268

    Article  Google Scholar 

  • Chen L, Frauenfeld OW (2014) Comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J Geophys Res: Atmos 119:5767–5786

    Google Scholar 

  • Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692

    Article  Google Scholar 

  • Collins M, Booth BBB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2011) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36:1737–1766

    Article  Google Scholar 

  • Curry JA, Webster PJ (2011) Climate science and the uncertainty monster. Bull Am Meteorol Soc 92:1667–1682

    Article  Google Scholar 

  • Dawson A, Palmer TN, Corti S (2012) Simulating regime structures in weather and climate prediction models. Geophys Res Lett 39:L21805

    Google Scholar 

  • Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications. J Clim 29:223–2258

    Article  Google Scholar 

  • diSessa AA (1993) Toward an epistemology of physics. Cogn Instr 10:105–225

    Article  Google Scholar 

  • Evans JP, McCabe MF (2013) Effect of model resolution of a regional climate model simulation over southeast Australia. Clim Res 56:131–145

    Article  Google Scholar 

  • Falloon P, Challinor A, Dessai S, Hoang L, Johnson J, Koehler A-K (2014) Ensembles and uncertainty in climate change impacts. Front Environ Sci 2:33

    Article  Google Scholar 

  • Fogelin RJ (1994) Pyrrhonian reflection on knowledge and justification. Oxford University Press, Oxford

    Book  Google Scholar 

  • Frame DJ, Stone DA (2013) Assessment of the first consensus prediction on climate change. Nat Clim Change 3:357–359

    Article  Google Scholar 

  • Frigg R, Smith LA, Stainforth DA (2013) The myopia of imperfect climate models: the case of UKCP09. Philos Sci 80:886–897

    Article  Google Scholar 

  • Frigg R, Bradley S, Du H, Smith LA (2014) Laplace’s demon and the adventures of his apprentices. Philos Sci 81:31–59

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104

    Article  Google Scholar 

  • Gregory JM, Andrews T, Good P (2015) The inconstancy of the transient climate response parameter under increasing CO2. Philos Trans R Soc A 373:20140417

    Article  Google Scholar 

  • Guillemot H (2010) Connections between simulations and observation in climate computer modeling. scientists’ practices and ‘bottom-up epistemology’ lessons. Stud Hist Philos Mod Phys 41:242–252

    Article  Google Scholar 

  • Guttorp P (2014) Statistics and climate. Ann Rev Stat Appl 1:87–101

    Article  Google Scholar 

  • Hall A (2014) Projecting regional change. Science 346:1461–1462

    Article  Google Scholar 

  • Hargreaves JC (2010) Skill and uncertainty in climate models. Wiley Interdiscip Rev Clim Change 1:556–564

    Article  Google Scholar 

  • Hargreaves JC, Annan JD (2014) Can we trust climate models? WIREs Clim Change 5:435–440

    Article  Google Scholar 

  • Harrison SP, Bartlein PJ, Brewer S, Prentice IC, Boyd M, Hessler I, Holmgren K, Izumi K, Willis K (2014) Climate model benchmarking with glacial and mid-Holocene climates. Clim Dyn 43:671–688

    Article  Google Scholar 

  • Hawkins E, Sutton R (2016) Connecting climate model projections of global temperature change with the real world. Bull Am Meteorol Soc 2016:963–980

    Article  Google Scholar 

  • Held IM (2005) The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1614

    Article  Google Scholar 

  • Ho CK, Stephenson DB, Collins M, Ferro, C.A.T., Brown SJ (2012) Calibration strategies—a source of additional uncertainty in climate change projections. Am Meteorol Soc 1:21–26

    Article  Google Scholar 

  • Hourdin F, Mauritsen T, Gettelman A, Golaz J-C, Balaji V, Duan Q, Folini D, Ji D, Klocke D, Qian Y, Rauser F, Rio C, Tomassini L, Watanabe M, Williamson D (2017) The art and science of climate model tuning. Bull Am Meteorol Soc 98:589–602

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, pp 1535

  • Katzav J (2014) The epistemology of climate models and some of its implications for climate science and the philosophy of science. Stud Hist Philos Mod Phys 46:228–238

    Article  Google Scholar 

  • Katzav J, Dijkstra HA, de Laat ATJ (2012) Assessing climate model projections: state of the art and philosophical reflections. Stud Hist Philos Mod Phys 43:258–276

    Article  Google Scholar 

  • Kiehl J (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723

    Article  Google Scholar 

  • Koutsoyiannis D (2006) A toy model of climatic variability with scaling behaviour. J Hydrol 322:25–48

    Article  Google Scholar 

  • Kundzewicz ZW, Stakhiv EZ (2010) Are climate models ‘ready for prime time’ in water resources management applications, or is more research needed? Hydrol Sci J 55:1085–1089

    Article  Google Scholar 

  • Lacagnina C, Selten F (2014) Evaluation of clouds and radiative fluxes in the EC-Earth general circulation model. Clim Dyn 43:2777–2796

    Article  Google Scholar 

  • Lahsen M (2005) Seductive simulations? Uncertainty distribution around climate models. Soc Stud Sci 35:895–922

    Article  Google Scholar 

  • Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Gliesner BL, Timmermann A, Smith RS, Lohmann G, Zheng W, Timm OE (2014) The Holocene temperature conundrum. Proc Natl Acad Sci 11:E3501–E3505

    Article  Google Scholar 

  • Lloyd EA (2010) Confirmation and robustness of climate models. Philos Sci 77:971–984

    Article  Google Scholar 

  • Loehle C (1983) Evaluation of theories and calculation tools in ecology. Ecol Modell 19:239–247

    Article  Google Scholar 

  • Loehle C (1987) Errors of construction, evaluation, and inference: a classification of sources of error in ecological models. Ecol Modell 36:297–314

    Article  Google Scholar 

  • Loehle C (1988) Philosophical tools: potential contributions to ecology. Oikos 51:97–104

    Article  Google Scholar 

  • Loehle C (1997) A hypothesis testing framework for evaluating ecosystem model performance. Ecol Modell 97:153–165

    Article  Google Scholar 

  • Loehle C (2011) The logic of scientific discovery. Curr Trends Ecol 2:75–81

    Google Scholar 

  • Loehle C (2014) A minimal model for estimating climate sensitivity. Ecol Modell 276:80–84

    Article  Google Scholar 

  • Loehle C (2015) Global temperature trends adjusted for unforced variability. Univ J Geosci 3:183–187

    Article  Google Scholar 

  • Lovejoy S (2015) A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim Dyn 44:3187–3210

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  Google Scholar 

  • Marston JB, Chini GP, Tobias SM (2016) Generalized quasilinear approximation: application to zonal jets”. Phys Rev Lett 116:21450

    Article  Google Scholar 

  • Mauritsen T (2016) Clouds cooled the earth. Nat Geosci doi:10.1038/ngeo2838.

    Google Scholar 

  • Mauritsen T, Stevens B (2015) Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat Geosci 8:346–351

    Article  Google Scholar 

  • Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate of a global model. J Adv Model Earth Sys 4:M00A01.

    Google Scholar 

  • McKitrick R, McIntyre S, Herman C (2010) Panel and multivariate methods for tests of trend equivalence in climate data series. Atmos Sci Lett 11:270–277

    Article  Google Scholar 

  • McNeall D, Williams J, Booth B, Betts R, Challenor P, Wiltshire A, Sexton D (2016) The impact of structural error on parameter constraint in a climate model. Earth Syst Dyn. doi:10.5194/esd-2016-17.

    Google Scholar 

  • McWilliams JC (2007) Irreducible imprecision in atmospheric and oceanic simulations. Proc Natl Acad Sci 104:8709–8713

    Article  Google Scholar 

  • Meehl PE (1997) The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In: Harlow LL, Mulaik SA, Steiger JH (eds) What if there were no significance tests? Erlbaum, Mahwah, pp 393–425

    Google Scholar 

  • Moncrieff MW, Liu C, Bogenschutz P (2017) Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. J Atmos Sci 74:1363–1380

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change situations. Nature 430:768–772

    Article  Google Scholar 

  • Oreopoulos L, Mlawer E (2010) The Continual Intercomparison of Radiation Codes (CIRC): assessing anew the quality of GCM radiation algorithms. Bull Am Meteorol Soc 91:305–310

    Article  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  • Outten S, Thorne P, Bethke I, Seland Ø (2015) Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member earth system model ensembles. J Geophys Res: Atmos 120:8575–8596

    Google Scholar 

  • Parker WS (2011) When climate models agree: the significance of robust model predictions. Philos Sci 78:579–600

    Article  Google Scholar 

  • Po-Chedley S, Fu Q (2012) Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ Res Lett 7:044018

    Article  Google Scholar 

  • Popper KR (1959) The logic of scientific discovery. Hutchinson, London

    Google Scholar 

  • Popper KR (1963) Conjectures and refutations: the growth of scientific knowledge. Harper & Row, New York

    Google Scholar 

  • Räisänen J (2007) How reliable are climate models? Tellus 59A:2–29

    Article  Google Scholar 

  • Reiss J (2015) A pragmatist theory of evidence. Philos Sci 82:341–362

    Article  Google Scholar 

  • Robinson AP, Froese RE (2004) Model validation using equivalence tests. Ecol Modell 176:349–358

    Article  Google Scholar 

  • Robinson AP, Duursma RA, Marshall JD (2005) A regression-based equivalence test for model validation: shifting the burden of proof. Tree Physiol 25:903–913

    Article  Google Scholar 

  • Rougier J, Goldstein M (2014) Climate simulators and climate projections. Ann Rev Stat Appl 1:103–123

    Article  Google Scholar 

  • Sakamoto TT, Komuro Y, Nishimura T, Ishii M, Tatebe H, Shiogama H, Hasegawa A, Toyoda T, Mori M, Suzuki T, Imada Y, Nazawa T, Takata K, Mochizuki T, Ogochi K, Emori S, Hasumi H, Kimoto M (2012) MICRO4h—a new high resolution atmosphere-ocean coupled general circulation model. J Meteorol Soc Japan 90:325–359

    Article  Google Scholar 

  • Schmidt GA, Sherwood S (2015) A practical philosophy of complex climate modelling. Eur J Philos Sci 5:149–169

    Article  Google Scholar 

  • Schwartz SE (2004) Uncertainty requirements in radiative forcing of climate change. JAWMA 54:1351–1359

    Google Scholar 

  • Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7:703–708

    Article  Google Scholar 

  • Smith LA (2002) What might we learn from climate forecasts? Proc Natl Acad Sci 99:2487–2492

    Article  Google Scholar 

  • Soon W, Baliunas S, Idso SB, Kondratyev KY, Posmentier ES (2001) Modeling climatic effects of anthropogenic carbon dioxide emissions: unknowns and uncertainties. Clim Res 18:259–275

    Article  Google Scholar 

  • Spencer RW, Braswell WD (2011) On the misdiagnosis of surface temperature feedbacks from variations in Earth’s radiant energy balance. Remote Sens 3:1603–1613

    Article  Google Scholar 

  • Staniforth A, Thuburn J (2012) Horizontal grids for global weather and climate prediction models: a review. Q J R Meteorol Soc 138:1–26

    Article  Google Scholar 

  • Stephens GL, O’Brien D, Webster PJ, Pilewski P, Kato S, Li J-I (2015) The albedo of Earth. Rev Geophys 53:141–163

    Article  Google Scholar 

  • Steppuhn A, Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) The sensitivity of ECHAM4/ML to a double CO2 scenario for the late Miocene and the comparison to terrestrial proxy data”. Glob Planet Change 57:189–212

    Article  Google Scholar 

  • Stevens B (2015) Rethinking the lower bound on aerosol radiative forcing. J Clim 28:4794–4819

    Article  Google Scholar 

  • Stevens B, Bony S (2013a) What are climate models missing? Science 340:1053

    Article  Google Scholar 

  • Stevens B, Bony S (2013b) Water in the atmosphere. Phys Today 66:29–34

    Article  Google Scholar 

  • Stott P, Good P, Jones G, Gillett N, Hawkins E (2013) The upper end of climate model temperature projections is inconsistent with past warming. Environ Res Lett 8:014024

    Article  Google Scholar 

  • Stouffer RJ, Manabe S (2017) Assessing temperature pattern projections made in 1989. Nat Clim Change 7:163–165

    Article  Google Scholar 

  • Sun D-Z, Yu Y, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) the use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2053–2075

    Article  Google Scholar 

  • Thorne P, Outten S, Bethke I, Seland Ø (2015) Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. J Geophysl Res: Atmos 120:8597–8620

    Google Scholar 

  • Thuburn J (2008) Some conservation issues for the dynamical cores of NWP and climate models. J Comput Phys 227:3715–3730

    Article  Google Scholar 

  • Trenberth KE (2015) Climate change: has there been a hiatus? Science 349:691–692

    Article  Google Scholar 

  • Wang Z, Zhang X, Guan Z, Sun B, Yang X, Liu C (2015) An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep 5:8909

    Article  Google Scholar 

  • Wegener A (1966) The origin of continents and oceans (Biram J, trans.). Courier Dover p 246.

  • Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8:024033

    Article  Google Scholar 

  • Williams M (2001) Problems of knowledge: a critical introduction to epistemology. Oxford University Press, Oxford

    Google Scholar 

  • Winter CL, Nychka D (2010) Forecasting skill of model averages. Stoch Env Res Risk A 24:633–638

    Article  Google Scholar 

  • Xiao H, Gustafson WI Jr, Wang H (2014) Impact of subgrid-scale radiative heating variability on the stratocumulus-to-trade cumulus transition in climate models. J Geophys Res: Atmos 119:4192–4203

    Google Scholar 

  • Zhou Z, Xie S (2015) Effects of climatological model biases on the projection of tropical climate change. J Clim 28:9909–9917

    Article  Google Scholar 

  • Zhou L, Zhang M, Bao Q, Liu Y (2015) On the incident solar radiation in CMIP5 models. Geophys Res Lett 42:1930–1935

    Article  Google Scholar 

  • Zhou C, Zelinka MD, Klein SA (2016) Impact of decadal cloud variations on the Earth’s energy budget. Nat Geosci. doi:10.1038/ngeo2828

    Google Scholar 

Download references

Acknowledgements

The author notes no financial or other conflicts of interest. No outside funding was used to perform this work. Thanks to M. Briggs, P. Frank, W. Kininmonth, W. Eschenbach, D. McLaughlin, W. Soon, and D. Stockwell for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Loehle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 947 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loehle, C. The epistemological status of general circulation models. Clim Dyn 50, 1719–1731 (2018). https://doi.org/10.1007/s00382-017-3717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3717-7

Keywords

Navigation