Advertisement

Climate Dynamics

, Volume 50, Issue 5–6, pp 1659–1673 | Cite as

Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

  • G. Srinivas
  • Jasti S. Chowdary
  • C. Gnanaseelan
  • K. V. S. R. Prasad
  • Ananya Karmakar
  • Anant Parekh
Article

Abstract

In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air–sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.

Keywords

Subsurface temperature Coupled model Indian Ocean La Niña SST 

Notes

Acknowledgements

We thank Director, ESSO-IITM for support. We have used (Hadley EN4.1.1) temperature data from http://www.metoffice.gov.uk/hadobs/en4/download-en4-1-1.html, ECCO data from http://www.ecco-group.org, and ERA interim data from http://www.ecmwf.int/en/research/climate-reanalysis/era-interim. We sincerely thank the anonymous reviewers for their valuable comments that helped us to improve the manuscript. Figures are prepared in PyFerret.

References

  1. Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599CrossRefGoogle Scholar
  2. Balaguru K, Ruby Leung L, Yoon JH (2013) Oceanic control of Northeast Pacific hurricane activity at interannual timescales. Environ Res Lett 8(4):044009. doi: 10.1088/1748-9326/8/4/044009 CrossRefGoogle Scholar
  3. Ballester J, Burns JC, Cayan D, Nakamura Y, Uehara R, Rodó X (2013) Kawasaki disease and ENSO-driven wind circulation. Geophys Res Lett 40:2284–2289. doi: 10.1002/grl.50388 CrossRefGoogle Scholar
  4. Bansod SD (2011) Interannual variability of convective activity over the tropical Indian Ocean during the El Niño/La Niña events. Int J Remote Sens 32(19):5565–5582CrossRefGoogle Scholar
  5. Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton P, Zhang X, Ganachaud A, Murphy B, Wijffels SE (2013) Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Clim Change. doi: 10.1007/s10584-012-0603-5 Google Scholar
  6. Chang P, Yamagata T, Schopf P, Behera SK, Carton J, Kessler WS, Meyers G, Qu T, Schott F, Shetye SR, Xie S-P (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174CrossRefGoogle Scholar
  7. Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Climatol 114:459–477CrossRefGoogle Scholar
  8. Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Clim Dyn 28:273–290CrossRefGoogle Scholar
  9. Chowdary JS, Parekh A, Sayantani O, Gnanaseelan C (2015) Role of upper ocean processes in the seasonal SST evolution over tropical Indian Ocean in Climate Forecasting System. Clim Dyn. doi: 10.1007/s00382-015-2478-4 Google Scholar
  10. Chowdary JS, Parekh A, Ojha S, Gnanaseelan C, Kakatkar R (2016a) Impact of upper ocean processes and air–sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int J Clim 4336:188–207. doi: 10.1002/joc CrossRefGoogle Scholar
  11. Chowdary JS, Anant Parekh, Srinivas G, Gnanaseelan C, Fousiya TS, Rashmi K, Roxy MK (2016b) Processes associated with the tropical Indian Ocean subsurface temperature bias in a coupled model. J Phys Ocean. doi: 10.1175/JPO-D-15-0245.1 Google Scholar
  12. De S, Hazra A, Chaudhari HS (2015) Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects. Clim Dyn. doi: 10.1007/s00382-015-2640-z Google Scholar
  13. Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteor Soc 137: 553–597CrossRefGoogle Scholar
  14. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Ocean 118:6704–6716. doi: 10.1002/2013JC009067 CrossRefGoogle Scholar
  15. Griffies SM (2012) Elements of the modular ocean model (MOM): 2012 release (GFDL Ocean group technical report no. 7. GFDL Ocean group technical report no. 7. NOAA/Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  16. Griffies S, Harrison MJ, Pacanowski RC, Anthony R. (2004) A technical guide to MOM4, GFDL Ocean group, technical report no. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, p 342Google Scholar
  17. Halkides DJ, Lee T, Kida S (2011) Mechanisms controlling seasonal mixed-layer temperature and salinity of the Indonesian seas. Ocean Dyn 61:481–495. doi: 10.1007/s10236-010-0374-3 CrossRefGoogle Scholar
  18. Jiang X, Yang S, Li J, Li Y, Hu H, Lian Y (2013) Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Clim Dyn 41:2199–2212CrossRefGoogle Scholar
  19. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142CrossRefGoogle Scholar
  20. Kirtman B, Vecchi GA (2011) Why climate modelers should worry about atmospheric and oceanic weather. In: Chang C-P, Ding Y, Lau N-C, Johnson RH, Wang B, Yasunari T (eds) The global monsoon system: research and forecast, 2nd edn. World scientific series on Asia-Pacific weather and climate, vol 5. World Scientific Publication Company, Singapore, pp 511–524Google Scholar
  21. Krishnamurthy V, Kinter JL (2003) The Indian monsoon and its relation to global climate variability. Global climate. Rodó X, Comín FA (eds) Springer, Berlin, 186–236Google Scholar
  22. Krishnamurthy V, Kirtman B (2003) Variability of the Indian Ocean: relation to monsoon and ENSO. Quart J R Meteorol Soc 129: 1623–1646CrossRefGoogle Scholar
  23. Krishnan R, Ramesh KV, Samala BK, Meyers G, Slingo JM, Fennessy MJ (2006) Indian Ocean–monsoon coupled interactions and impending monsoon droughts. Geophys Res Lett 33:L08711. doi: 10.1029/2006GL025811 CrossRefGoogle Scholar
  24. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346CrossRefGoogle Scholar
  25. Levitus S, Boyer TP, Conkright ME, O’ Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) NOAA Atlas NESDIS 18,World Ocean Database 1998: volume 1: introduction. US Gov. Printing Office, Washington, DC, p 346Google Scholar
  26. Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. doi: 10.1029/2012GL053777 Google Scholar
  27. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780CrossRefGoogle Scholar
  28. Li G, Xie S-P, Du Y (2015a) Monsoon-induced biases of climate models over the tropical Indian Ocean. J Clim 28:3058–3072CrossRefGoogle Scholar
  29. Li G, Xie S-P, Du Y (2015b) Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J Clim 28:3093–3098CrossRefGoogle Scholar
  30. Li G, Xie S-P, Du Y (2016) A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J Clim 29:5589–5608CrossRefGoogle Scholar
  31. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  32. Luo J-J, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  33. Luo J-J, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109(46):18701–18706CrossRefGoogle Scholar
  34. McCreary JP, Kundu PK, Molinari R (1993) A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog Oceanogr 31:181–244CrossRefGoogle Scholar
  35. Pant GB, Rupa Kumar K (1997) Climates of South Asia. Wiley, Chichester, p 320Google Scholar
  36. Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation–precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608CrossRefGoogle Scholar
  37. Preethi B, Sabin TP, Adedovin JA, Ashok K (2015) Impacts of the ENSO Modoki and other tropical Indo-Pacific climate-drivers on African rainfall. Sci Rep. doi: 10.1038/srep16653 Google Scholar
  38. Ramu DA, Sabeerali CT, Chattopadhyay R, Rao DN, George G, Dhakate AR, Salunke K, Srivastava A, Rao SA (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: impact of atmospheric horizontal resolution. J Geophys Res Atmos 121:2205–2221. doi: 10.1002/2015JD024629 CrossRefGoogle Scholar
  39. Ruiz JE, Cordery I, Sharma A (2005) Integrating ocean subsurface temperatures in statistical ENSO forecasts. J Clim 18(17):3571–3586. doi: 10.1175/JCLI3477.1 CrossRefGoogle Scholar
  40. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  41. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  42. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Pan HL, Behringer D, Hou YT, Chuang HY, Mark I, Ek M, Meng J, Yang R (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  43. Saha SK, Sujith K, Pokhrel S, Chaudhari HS, Hazra A (2016) Predictability of global monsoon rainfall in NCEP CFSv2. Clim Dyn 47(5–6):1693–715CrossRefGoogle Scholar
  44. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  45. Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  46. Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi: 10.1029/2007RG000245 CrossRefGoogle Scholar
  47. Sengupta D, Senan R, Murty VSN, Fernando V (2004) A biweekly mode in the equatorial Indian Ocean. J Geophys Res 109:C10003. doi: 10.1029/2004JC002329 CrossRefGoogle Scholar
  48. Sengupta D, Senan R, Goswami BN (2007) Intraseasonal variability of equatorial Indian Ocean zonal currents. J Clim 20:3036–3055CrossRefGoogle Scholar
  49. Shankar D, Vinayachandran PN, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52:63–120CrossRefGoogle Scholar
  50. Singh P, Chowdary JS, Gnanaseelan C (2013) Impact of prolonged La Niña Events on the Indian Ocean with a special emphasis on Southwest Tropical Indian Ocean SST. Glob Plan Change 100: 28–37CrossRefGoogle Scholar
  51. Sreenivas P, Gnanaseelan C (2014) Impact of oceanic processes on the life cycle of severe cyclonic storm Jal. IEEE Geosci Remote Sens Lett 11:519–523. doi: 10.1109/LGRS.2013.2271512 CrossRefGoogle Scholar
  52. Tao W, Huang G, Hu K, Gong H, Wen G, Liu L (2015) A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Clim Dyn. doi: 10.1007/s00382-015-2579-0 Google Scholar
  53. Vincent EM, Emanuel KA, Lengaigne M, Vialard J, Madec G (2014) Influence of upper ocean stratification interannual variability on tropical cyclones. J Adv Model Earth Syst 6:680–699. doi: 10.1002/2014MS000327 CrossRefGoogle Scholar
  54. Vranes K, Gordon AL, Ffield A (2002) The heat transport of the Indonesian through flow and implications for the Indian Ocean heat budget. Deep Sea Res Part II 49(7):1391–1410. doi: 10.1016/S0967-0645(01)00150-3 CrossRefGoogle Scholar
  55. Wunsch C, Heimbach P (2013) Dynamically and kinematically consistent global ocean circulation and ice state estimates. In: Sielder G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate: a 21st century perspective. International Geophysics Series, vol 103. Academic Press, Oxford, pp 553–579. doi: 10.1016/b978-0-12-391851-2.00021-0
  56. Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264CrossRefGoogle Scholar
  57. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  58. Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878CrossRefGoogle Scholar
  59. Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR, Rao SA (2004) Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Wang C, Xie SP, Carton A (eds) Earth’s climate: the ocean–atmosphere interaction. Geophysical monograph, vol 147. American Geophysical Union, Washington DC, pp 189–211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • G. Srinivas
    • 1
    • 2
  • Jasti S. Chowdary
    • 1
  • C. Gnanaseelan
    • 1
  • K. V. S. R. Prasad
    • 2
  • Ananya Karmakar
    • 1
    • 3
  • Anant Parekh
    • 1
  1. 1.Indian Institute of Tropical Meteorology (IITM)PuneIndia
  2. 2.Department of Meteorology and OceanographyAndhra UniversityVisakhapatnamIndia
  3. 3.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations