The influence of orography on modern ocean circulation

  • Pierre Maffre
  • Jean-Baptiste Ladant
  • Yannick Donnadieu
  • Pierre Sepulchre
  • Yves Goddéris
Article
  • 102 Downloads

Abstract

The effects of orography on climate are investigated with a coupled ocean–atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

Keywords

Orography Climate Thermohaline circulation Sensitivity Modelling 

Supplementary material

382_2017_3683_MOESM1_ESM.pdf (12.8 mb)
Supplementary material 1 (PDF 13075 KB)

References

  1. Barron EJ, Washington WM (1984) The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies. J Geophysical Res 89:1267–1279CrossRefGoogle Scholar
  2. Bolin B (1950) On the influence of the earth’s orography on the general character of the westerlies. Tellus 2(3):184–195CrossRefGoogle Scholar
  3. Boos WR, Kuang Z (2010) Dominant control of the south Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222CrossRefGoogle Scholar
  4. Broccoli AJ, Manabe S (1992) The effects of orography on middle latitude northen-hemispher dry climates. J Climate 5(11):1181–1201CrossRefGoogle Scholar
  5. Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus 1(2):38–54CrossRefGoogle Scholar
  6. Dufresne J-L et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9):2123–2165CrossRefGoogle Scholar
  7. Ferreira D, Marshall J, Campin J-M (2010) Localization of deep-water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J Climate 23:1456–1476CrossRefGoogle Scholar
  8. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydro- graphic data. Nature 408:453–457CrossRefGoogle Scholar
  9. Hahn DG, Manabe S (1975) The role of mountains in the South Asian Monsoon Circulation. J Atmos Sci 32:1515–1541CrossRefGoogle Scholar
  10. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330(6006):927–931. doi:10.1126/science.1194585 CrossRefGoogle Scholar
  11. Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne JL, Lefebvre MP, Lahellec A, Roehrig R (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. 40(9):2193–2222. doi:10.1007/s00382-012-1343-y CrossRefGoogle Scholar
  12. Huber M, Goldner A (2012) Eocene monsoons. J Asian Earth Sci 44:3–23CrossRefGoogle Scholar
  13. Kitoh A (1997) Mountain uplift and surface temperature changes. Geophys Res Lett 24(2):185–188CrossRefGoogle Scholar
  14. Kitoh A (2002) Effects of large-scale mountains on surface climate—a coupled ocean-atmosphere general circulation model study. J Meteorol Soc Jpn 80(5):1165–1181CrossRefGoogle Scholar
  15. Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424:532–536CrossRefGoogle Scholar
  16. Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol 101(2):177–190CrossRefGoogle Scholar
  17. Levitus SE (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13. US Government Printing Office, Washington DCGoogle Scholar
  18. Li ZX, Le Treut H (1999) Transient behavior of the meridional moisture transport across South America and its relation to atmospheric circulation patterns. Geophys Res Lett 26(10):1409–1412CrossRefGoogle Scholar
  19. Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon Weather Rev 127:788–801CrossRefGoogle Scholar
  20. Lott F, Miller MJ (1997) A new subgrid scale orographic drag parameterization; its testing in the ECMWF model. Q J R Meteorol Soc 123(537):101–127CrossRefGoogle Scholar
  21. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6), 381–388CrossRefGoogle Scholar
  22. Manabe S, Broccoli AJ (1990) Mountains and arid climates of middle latitudes. Science 247(4939):192–195CrossRefGoogle Scholar
  23. Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31(1):3–42CrossRefGoogle Scholar
  24. Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5(3):171–180. doi:10.1038/ngeo1391 CrossRefGoogle Scholar
  25. Mignot J, Frankignoul C (2010) Local and remote impacts of tropical Atlantic salinity anomaly. Clim Dyn 35(7–8):1133–1147CrossRefGoogle Scholar
  26. Molnar P, Boos WR, Battisti DS (2010) Orographic control on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan plateau. Annu Rev Earth Planet Sci 38:77–102CrossRefGoogle Scholar
  27. Nilsson J, Langen PL, Ferreira D, Marshall J (2013) Ocean basin geometry and the salinification of the Atlantic Ocean. J Clim 26(16):6163–6184CrossRefGoogle Scholar
  28. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrological cycle of the tropical Atlantic during the last glacial. Science 290(5498):1947–1951CrossRefGoogle Scholar
  29. Poulsen CJ, Ehlers TA, Insel N (2010) Onset of convective rainfall during gradual late miocene rise of the Central Andes. Science 328(5977):490–493CrossRefGoogle Scholar
  30. Schmidt MW, Spero HJ, Lea DW (2004) Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428:160–163CrossRefGoogle Scholar
  31. Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice-sheets on global ocean circulation. J Clim 24:2814–2829CrossRefGoogle Scholar
  32. Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin J-J, Brunet M (2006) Tectonic uplift and Eastern Africa aridification. Science 313(5792):1419–1423CrossRefGoogle Scholar
  33. Sepulchre P, Sloan LC, Fluteau F (2010) Modelling the Response of Amazonian Climate to the Uplift of the Andean Mountain Range. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell Publishing Ltd., Oxford. doi:10.1002/9781444306408.ch13 Google Scholar
  34. Shi Z, Liu X, Liu Y, Sha Y, Xu T (2015) Impact of Mongolian Plateau versus Tibetan Plateau on the Westerly Jet over North Pacific Ocean. Clim Dyn 44(11):3067–3076CrossRefGoogle Scholar
  35. Sinha B, Blaker AT, Hirschi JJ-M, Bonham S, Brand M, Josey S, Smith RS, Marotzke J (2012) Mountain ranges favour vigorous Atlantic meridional overturning. Geophys Res Lett 39:L02705. doi:10.1029/2011GL050485 CrossRefGoogle Scholar
  36. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28(2):291–305Google Scholar
  37. Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42(4):477–500CrossRefGoogle Scholar
  38. Wu G, Liu Y, He B, Bao Q, Duan A, Jin F-F (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:404. doi:10.1038/srep00404 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Géosciences Environnement Toulouse, CNRS-Université Toulouse 3ToulouseFrance
  3. 3.Aix Marseille Univ, CNRS, IRD, Coll France, CEREGEAix-en-ProvenceFrance

Personalised recommendations