Skip to main content

Advertisement

Log in

ENSO forced and local variability of North Tropical Atlantic SST: model simulations and biases

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Remote forcing from El Niño-Southern oscillation (ENSO) and local ocean–atmosphere feedback are important for climate variability over the North Tropical Atlantic. These two factors are extracted by the ensemble mean and inter-member difference of a ten-member Pacific Ocean-Global Atmosphere (POGA) experiment, in which sea surface temperatures (SSTs) are restored to the observed anomalies over the tropical Pacific but fully coupled to the atmosphere elsewhere. POGA reasonably captures main features of the observed North Tropical Atlantic variability. Both ENSO forced and local North Tropical Atlantic Modes (NTAMs) develop with wind-evaporation-SST feedback. Notable biases exist. The seasonality of the simulated NTAM is delayed by 1 month, due to the late development of the North Atlantic Oscillation (NAO) in the model. This suggests the importance of NAO in setting the seasonality of NTAM and of the extratropical-tropical teleconnection. The simulated NTAM is closely related to the Atlantic Niño in the subsequent summer, a relationship not so obvious in observations. Local variability, represented by the preseason NAO and SST persistence, contributes considerably to NTAM variability. Including these two indicators, together with ENSO, improves the predictability of NTAM. The South Tropical Atlantic Mode can be forced by ENSO, and a cross-equatorial dipole is triggered by ENSO instead of local air-sea coupling within the tropical Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Amaya DJ, Foltz GR (2014) Impacts of canonical and Modoki El Niño on tropical Atlantic SST. J Geophys Res Oceans 119:777–789

    Article  Google Scholar 

  • Amaya DJ, DeFlorio MJ, Miller AJ, Xie S-P (2016) WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons. Clim Dyn. doi:10.1007/s00382-016-3411-1

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chang P, Ji L, Saravanan R (2001) A hybrid coupled model study of the tropical Atlantic variability. J Clim 14:361–390

    Article  Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nat Biotechnol 443(7109):324&nbsp

    Google Scholar 

  • Chiang JCH, Vimont D (2004) Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J Clim 17:4143–4158

    Article  Google Scholar 

  • Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: influence of the local cross-equatorial sea surface temperature gradient, and remote forcing from the eastern equatorial Pacific. J Geophys Res 107:4004. doi:10.1029/2000JD000307

    Article  Google Scholar 

  • Chikamoto Y, Timmermann A, Luo J-J, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie S-P, Jin F-F (2015) Skilful multi-year predictions of tropical trans-basin climate variability. Nat Commun 6:6869

    Article  Google Scholar 

  • Covey DL, Hastenrath S (1978) The Pacific El Nino phenomenon and the Atlantic circulation. Mon Weather Rev 106:1280–1287

    Article  Google Scholar 

  • Czaja A, van der Vaart P, Marshall J (2002) A diagnostic study of the role of remote forcing in tropical Atlantic variability. J Clim 15:3280–3290

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Delecluse P, Servain J, Levy C, Arpe K, Bengtsson L (1994) On the connection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus 46A:448–464

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn 16:661–676

    Article  Google Scholar 

  • Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Doi T, Tozuka T, Yamagata T (2010) The Atlantic meridional mode and its coupled variabilitywith the GuineaDome. J Clim 23:455–475

    Article  Google Scholar 

  • Dommenget D, Latif M (2000) Interannual to decadal variability in the tropical Atlantic. J Clim 13:777–792

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic SST variability and its relation to El Niño–Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Enfield DB, Mestas-Nun˜ez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperature? J Geophys Res 104:7841–7848

    Article  Google Scholar 

  • Foltz GR, McPhaden MJ, Lumpkin R (2012) A strong Atlantic Meridional Mode event in 2009: the role of mixed layer dynamics. J Clim 25(1):363–380. doi:10.1175/Jcli-D-11-00150.1

    Article  Google Scholar 

  • GFDL Global Atmospheric Model Development Team (2004) The new GFDL global atmosphere and land model AM2–LM2: evaluation with prescribed SST simulations. J Clim 17:4641–4673. doi:10.1175/JCLI-3223.1

    Article  Google Scholar 

  • Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and Atlantic Ocean. J Clim 13:297–311

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the North Tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Hastenrath S (1984) Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Mon Weather Rev 112:1097–1107

    Article  Google Scholar 

  • Hastenrath S (2012) Exploring the climate problems of Brazil’s Nordeste: a review. Clim Change 112:243–251

    Article  Google Scholar 

  • Hastenrath S, Heller L (1977) Dynamics of climatic hazards in northeast Brazil. Q J R Meteorol Soc 103:77–92

    Article  Google Scholar 

  • Houghton RW, Tourre YM (1992) Characteristic low-frequency sea surface temperature fluctuations in the tropical Atlantic. J Clim 5:765–771

    Article  Google Scholar 

  • Hu ZZ, Huang BH (2006) Physical processes associated with the tropical Atlantic SST meridional gradient. J Clim 19:5500–5518

    Article  Google Scholar 

  • Huang B (2004) Remotely forced variability in the tropical Atlantic Ocean. Clim Dyn. doi:10.1007/s00382-004-0443-8

    Article  Google Scholar 

  • Huang BH, Shukla J (2005) Ocean-atmosphere interactions in the tropical and subtropical Atlantic Ocean. J Clim 18:1652–1672

    Article  Google Scholar 

  • Huang B, Schopf PS, Shukla J (2004) Intrinsic ocean–atmosphere variability of the tropical Atlantic Ocean. J Clim 17:2058–2077

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kosaka Y, Xie S-P. (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc Natl Acad Sci USA 110:7574–7579

    Article  Google Scholar 

  • Kushnir Y, Seager T, Miller J, Chiang JCH (2002) A simple coupled model of tropical Atlantic decadal climate variability. Geophys Res Lett 29:2133. doi:10.1029/2002GL015874

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Li X, Xie S-P, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279

    Article  Google Scholar 

  • Mahajan S, Saravanan R, Chang P (2010) Free and forced variability of the tropical Atlantic Ocean: role of the wind-evaporation-sea surface temperature feedback. J Clim 23:5958–5977

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Article  Google Scholar 

  • Mehta VM, Delworth T (1995) Decadal variability of the tropical Atlantic Ocean surface temperature in shipboard measurements and in a global ocean–atmosphere model. J Clim 8:172–190

    Article  Google Scholar 

  • Nnamchi H, Li J, Kucharski F, Kang I, Keenlyside NS, Chang P, Farneti R (2015) Thermodynamic controls of the Atlantic Niño. Nat Commun 6:8895. doi:10.1038/ncomms9895

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598

    Article  Google Scholar 

  • Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188.

    Article  Google Scholar 

  • Servain J (1991) Some simple climatic indices for the tropical Atlantic Ocean and some application. J Geophys Res 96:15137–15146

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs historical merged land–ocean temp analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs. J Clim 19:6047–6061

    Article  Google Scholar 

  • Sutton RT, Jewson SP, Rowell DP (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13:3261–3284

    Article  Google Scholar 

  • Vimont DJ (2012) Analysis of the Atlantic meridional mode using linear inverse modeling: seasonality and regional influences. J Clim 25:1194–1212

    Article  Google Scholar 

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709. doi:10.1029/2007GL029683

    Article  Google Scholar 

  • Wang B, An S-I (2005) A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett 32:L15710

    Article  Google Scholar 

  • Wu L, Liu Z (2002) Searching for the role of ENSO in the tropical Atlantic variability. CLIVAR Exchanges 25(7):20–24

    Google Scholar 

  • Wu L, Zhang Q, Liu Z (2004) Toward understanding tropical Atlantic variability using coupled modeling surgery. In: Earth climate: the ocean–atmosphere interaction. Geophysical monograph series, vol 147. American Geophysical Union, pp 157–170

  • Wu L, He F, Liu Z, Li C (2007) Atmospheric teleconnections of tropical Atlantic variability: interhemispheric, tropical–extratropical, and cross-basin interactions. J Clim 20:856–870

    Article  Google Scholar 

  • Xie S-P (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Article  Google Scholar 

  • Xie S-P, Carton J (2004) Tropical Atlantic variability: patterns, mechanisms, and Impacts. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, D. C

    Google Scholar 

  • Xie S-P, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Xie S-P, Tanimoto Y (1998) A pan-Atlantic decadal climate oscillation. Geophys Res Lett 25:2185–2188

    Article  Google Scholar 

  • Yang J (1999) A linkage between decadal climate variations in the Labrador Sea and the tropical Atlantic Ocean. Geophys Res Lett 26:1023–1026

    Article  Google Scholar 

  • Yang Y, Wu L, Fang C (2012) Will global warming suppress North Atlantic Tripole decadal variability? J Clim 25:2040–2055

    Article  Google Scholar 

  • Yang Y, Xie SP, Wu L, Kosaka Y, Lau NC, Vecchi GA (2015) Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J Clim 28:8021–8036

    Article  Google Scholar 

  • Zhang H, Clement A (2016) The meridional mode in an idealized Aquaplanet model: dependence on the mean state. J Clim 29:2889–2905

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China (41606008 and 41521091), the National Basic Research Program of China (2012CB955600), NOAA Climate Program Office (NA13OAR4310092), the Postdoctoral Science Foundation of China (2015M581016), the Fundamental Research Funds for the Central Universities (2015NT07), and YK is supported by Japan Society for the Promotion of Science through Grant-in-Aid for Young Scientists (A) 15H05466 and Japan Science and Technology Agency through Belmont Forum CRA “InterDec”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Yang.

Additional information

This paper is a contribution to the special issue on East Asian Climate under Global Warming: Understanding and Projection, consisting of papers from the East Asian Climate (EAC) community and the 13th EAC International Workshop in Beijing, China on 24–25 March 2016, and coordinated by Jianping Li, Huang-Hsiung Hsu, Wei-Chyung Wang, Kyung-Ja Ha, Tim Li, and Akio Kitoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xie, SP., Wu, L. et al. ENSO forced and local variability of North Tropical Atlantic SST: model simulations and biases. Clim Dyn 51, 4511–4524 (2018). https://doi.org/10.1007/s00382-017-3679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3679-9

Keywords

Navigation