How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America’s Atlantic coast?

Abstract

Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America’s Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America’s Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (−0.1 day\(^{-1}\)). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to −22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (−15%, −18%) and Eady growth rate (−0.2 day\(^{-1}\), −0.2 day\(^{-1}\)), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Anderson D, Hodges KI, Hoskins BJ (2003) Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon Weather Rev 131(3):565–573

    Article  Google Scholar 

  2. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):1–6

    Article  Google Scholar 

  3. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301

    Article  Google Scholar 

  4. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543

    Article  Google Scholar 

  5. Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos 117(D23):1–19

    Article  Google Scholar 

  6. Christensen J, Kumar KK, Aldrian E, An S-I, Cavalcanti I, de Castro M, Dong W, Goswami P, Hall A, Kanyanga J, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson D, Xie SP, Zhou T (2013) Climate Phenomena and their Relevance for Future Regional Climate Change. In: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical report, Groupe d’experts intergouvernemental sur l’evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland)

  7. Colle BA, Booth JF, Chang EK (2015) A review of historical and future changes of extratropical cyclones and associated impacts along the us east coast. Curr Clim Change Rep 1(3):125–143

    Article  Google Scholar 

  8. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski Jr. WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical report, Groupe d’experts intergouvernemental sur l’evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland)

  9. Côté H, Grise KM, Son S-W, de Elía R, Frigon A (2015) Challenges of tracking extratropical cyclones in regional climate models. Clim Dyn 44(11–12):3101–3109

    Article  Google Scholar 

  10. Davis CA, Emanuel KA (1991) Potential vorticity diagnostics of cyclogenesis. Mon Weather Rev 119(8):1929–1953

    Article  Google Scholar 

  11. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  12. Denis B, Côté J, Laprise R (2002) Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon Weather Rev 130(7):1812–1829

    Article  Google Scholar 

  13. Fink AH, Pohle S, Pinto JG, Knippertz P (2012) Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys Res Lett 39(7):1–8

    Article  Google Scholar 

  14. Froude LS, Bengtsson L, Hodges KI (2007) The predictability of extratropical storm tracks and the sensitivity of their prediction to the observing system. Mon Weather Rev 135(2):315–333

    Article  Google Scholar 

  15. Giorgi F, Jones C, Asrar GR et al (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO). Bulletin 58(3):175

    Google Scholar 

  16. Haarsma R, Roberts M, Vidale P, Senior C, Bellucci A, Corti S, Fučkar N, Guemas V, von Hardenberg J, Hazeleger W et al (2016) High resolution model intercomparison project (HighResMIP). Geosci Model Dev 9:4185–4208

    Article  Google Scholar 

  17. Hall NM, Hoskins BJ, Valdes PJ, Senior CA (1994) Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart J R Meteorol Soc 120(519):1209–1230

    Article  Google Scholar 

  18. Hodges K (1994) A general method for tracking analysis and its application to meteorological data. Mon Weather Rev 122(11):2573–2586

    Article  Google Scholar 

  19. Hodges K (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127(6):1362–1373

    Article  Google Scholar 

  20. Hodges K et al (1995) Feature tracking on the unit-sphere. Mon Weather Rev 123(12):3458–3465

    Article  Google Scholar 

  21. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864

    Article  Google Scholar 

  22. Kocin PJ, Schumacher PN, Morales RF Jr, Uccellini LW (1995) Overview of the 12–14 March 1993 superstorm. Bull Am Meteorol Soc 76(2):165–182

    Article  Google Scholar 

  23. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26(7–8):713–728

    Article  Google Scholar 

  24. Long Z, Perrie W, Gyakum J, Laprise R, Caya D (2009) Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. J Geophys Res Atmos 114(D112):1–13

    Google Scholar 

  25. Marciano CG, Lackmann GM, Robinson WA (2015) Changes in US East Coast cyclone dynamics with climate change. J Clim 28(2):468–484

    Article  Google Scholar 

  26. Martin JE (2013) Mid-latitude atmospheric dynamics: a first course. John Wiley & Sons

  27. McDonald RE (2011) Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim Dyn 37(7–8):1399–1425

    Article  Google Scholar 

  28. Core Team R (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  29. Roebber PJ (1984) Statistical analysis and updated climatology of explosive cyclones. Mon Weather Rev 112(8):1577–1589

    Article  Google Scholar 

  30. Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Weather Rev 108(10):1589–1606

    Article  Google Scholar 

  31. Scinocca J, Kharin V, Jiao Y, Qian M, Lazare M, Solheim L, Flato G, Biner S, Desgagne M, Dugas B (2016) Coordinated global and regional climate modeling*. J Clim 29(1):17–35

    Article  Google Scholar 

  32. Seiler C, Zwiers F (2016a) How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn 46(3–4):1241–1256

    Article  Google Scholar 

  33. Seiler C, Zwiers F (2016b) How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn 46(11):3633–3644

    Article  Google Scholar 

  34. Stull, R. B. (2000). Meteorology for scientists and engineers: a technical companion book with Ahrens’ Meteorology Today. Brooks/Cole

  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  36. Ulbrich U, Pinto J, Kupfer H, Leckebusch G, Spangehl T, Reyers M (2008) Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21(8):1669–1679

    Article  Google Scholar 

  37. von Salzen K, Scinocca JF, McFarlane NA, Li J, Cole JN, Plummer D, Verseghy D, Reader MC, Ma X, Lazare M et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51(1):104–125

    Article  Google Scholar 

  38. Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70(7):2234–2250

    Article  Google Scholar 

  39. Willison J, Robinson WA, Lackmann GM (2015) North Atlantic storm-track sensitivity to warming increases with model resolution. J Clim 28(11):4513–4524

    Article  Google Scholar 

  40. Zappa G, Shaffrey LC, Hodges KI (2013a) The ability of CMIP5 models to simulate North Atlantic extratropical cyclones*. J Clim 26(15):5379–5396

    Article  Google Scholar 

  41. Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013b) A multimodel assessment of future projections of north atlantic and european extratropical cyclones in the cmip5 climate models*. J Clim 26(16):5846–5862

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Marine Environmental Observation Prediction and Response Network (MEOPAR) for this research. We thank Dr. Yanjun Jiao from the Canadian Centre for Climate Modelling and Analysis (CCCma) for providing us with data from CanRCM4. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank CCCma and ECMWF for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We are grateful for the constructive comments from two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Seiler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seiler, C., Zwiers, F.W., Hodges, K.I. et al. How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America’s Atlantic coast?. Clim Dyn 50, 677–692 (2018). https://doi.org/10.1007/s00382-017-3634-9

Download citation

Keywords

  • Explosive extratropical cyclones
  • Dynamical downscaling
  • Model biases
  • Climate change projections