Skip to main content

Analysis of future drought characteristics in China using the regional climate model CCLM

Abstract

In this paper, the intensity, area and duration of future droughts in China are analyzed using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI are used to evaluate the simulation ability of drought characteristics with the regional climate model COSMO-CLM (CCLM). The projected intensity and duration of future drought events are analyzed for the period 2016–2050 under three different respective concentration pathways (RCPs). The simulated and projected drought events are analyzed by applying the intensity-area-duration method. The results show that CCLM has a robust capability to simulate the average drought characteristics, while some regional disparities are not well captured, mainly the simulation of more drought events of shorter duration in Northwest China. For the future period 2016–2050, more intense dryness conditions are projected for China. An increase in evapotranspiration is found all over China, while a reduction in precipitation is apparent in the southern river basins. The increase in evapotranspiration plays an important role in the changes of future droughts over the northern river basins and southern river basins. Under RCP2.6, drought events of longer duration and with higher frequency are projected for the southwest and southeast of China. Under RCP4.5 and RCP8.5, a continuing tendency to more dry conditions is projected along a dryness band stretching from the southwest to the northeast of China. More frequent drought events of longer duration are projected in the southwestern river basins. For all future droughts, larger extents are projected, especially for events with long-term duration. The projected long-term drought events will occur more often and more severe than during the baseline period, and their central locations will likely shift towards Southeast China. The results of this study can be used to initiate and strengthen drought adaptation measures at regional and local scale, especially in the south of China.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  • Andreadis KM, Clark EA, Wood AW, Hamlet AF, Lettenmaier DP (2005) Twentieth-century drought in the conterminous United States. J Hydrometeorol 6:985–1001

    Article  Google Scholar 

  • Barriopedro D, Gouveia CM, Trigo RM, Wang L (2012) The 2009/10 drought in China: Possible causes and impacts on vegetation. J Hydrometeorol 13:1251–1267

    Article  Google Scholar 

  • Begueria S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  • Biondi F, Kozubowski TJ, Panorska AK, Saito L (2008) A new stochastic model of episode peak and duration for eco-hydro-climatic applications. Ecol Modell 211(3–4):383–395

    Article  Google Scholar 

  • Bordi I, Sutera A (2002) An analysis in Italy in the last 50 years. IL Nuovo Cimento, 25C:185–206

    Google Scholar 

  • Burke EJ, Brown SJ (2007) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9:292–299

    Article  Google Scholar 

  • Cai W, Purich A, Cowan T, van Rensch P, Weller E (2014) Did climate change-induced rainfall trends contribute to the Australian millennium drought? J Climate 27:3145–3168

    Article  Google Scholar 

  • Cao LG, Zhong J, Su BD, Zhai JQ, Macro G (2013) Probability distribution and projected trends of daily precipitation in China. Adv Clim Change Res 4(3):153–159

    Article  Google Scholar 

  • Chen HP, Sun JQ (2015) Changes in drought characteristics over China using the Standardized precipitation evapotranspiration index. J Clim 28:5430–5447

    Article  Google Scholar 

  • Chen HP, Sun JQ, Chen XL. 2013. Future changes of drought and flood events in China under a global warming scenario. Atmos Ocean Sci Lett 6(1):8–13

    Google Scholar 

  • Collins M, Knutti R, Arblaster JM, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, comments and irreversibility. In: Climate Change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner GK et al. Cambridge University Press, Cambridge, pp 1029–1136

  • Dai A (2013) Increasing drought under global warming in observations and models. Nature. Clim Change 3:52–58

    Article  Google Scholar 

  • Duffy PB, Brando P, Asner GP, Field CB (2015) Projections of future meteorological drought and wet periods in the Amazon. Proc Natl Acad Sci 112(43):13172–13177

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM, IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 582

    Book  Google Scholar 

  • Fischer T, Gemmer M, Liu L, Su BD (2011) Temperature and precipitation trends and dryness/wetness pattern in the Zhujiang River Basin, South China, 1961–2007. Quat Int 244(2):138–148

    Article  Google Scholar 

  • Fischer T, Menz C, Su BD, Scholten T (2013) Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM. J Climatol 33:2988–3001

    Article  Google Scholar 

  • Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86(1):173–185

    Article  Google Scholar 

  • Gao X, Shi Y, Zhang D, Wu J, Giorgi F, Ji Z, Wang Y (2012a) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226.

    Article  Google Scholar 

  • Gao X, Shi Y, Zhang DF, Giorgi F (2012b) Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin Sci Bull 57(10):1188–1195

    Article  Google Scholar 

  • Gemmer M, Jiang T, Su BD, Kundzewicz ZW (2008) Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China. Quat Int 186:12–21

    Article  Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597. doi:10.1002/jame.20038.

    Article  Google Scholar 

  • Giorgi F, Gutowski Jr W (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Colin J, Ghassem RA (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Hansen J, Ruedy R, Sato M et al (2010) Global surface temperature change. Rev Geophys 48:Rg4004

    Article  Google Scholar 

  • Hirabayashi Y, Kanae S, Emori S, Oki T, Kimoto M (2008) Global projections of changing risk of floods and droughts in a changing climate. J Geophys Res 53(4):754–772

    Google Scholar 

  • Ji Z, Kang S (2015) Evaluation of extreme climate events using a regional climate model for China. Int J Climatol 35:888–902

    Article  Google Scholar 

  • Kim DW, Byun HR (2009) Future pattern of Asian drought under global warming. Theor Appl Climatol 98:137–150

    Article  Google Scholar 

  • Laprise R (2014) Comment on “The added value to global model projections of climate change by dynamical downscaling: a case study over the continental U.S. using the GISS-ModelE2 and WRF models” by Racherla et al. J Geophys Res Atmos 119:3877–3881

    Article  Google Scholar 

  • Liang XZ, Li L, Kunkel KE (2004) Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: annual cycle. J Clim 17:3510–3529

    Article  Google Scholar 

  • Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35:L08709. doi:10.1029/2007GL032849

    Article  Google Scholar 

  • Liu K, Jiang DB, Ma JY (2012) Drought over China in the 21st century: results of RegCM3. Atmos Ocean Sci Lett 5(6):509–513.

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Am Meteor Soc, pp 179–184

  • McMahon TA, Peel MC, Karoly DJ (2015) Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation. Hydrol Earth Syst Sci 19:361–377

    Article  Google Scholar 

  • Meehl GA, Boer GJ, Covey C, Latif M, stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteorol Soc 81:313–318

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al. 2007. Global climate projection. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 747–845

  • Nasrollahi N, AghaKouchak A, Cheng L, Damberg L, Phillips TJ, Miao C, Hsu K, Soroosshian S (2014) How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour Res 51(4):2847–2864

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781

    Article  Google Scholar 

  • PaiMazumder D, Done JM (2014) Uncertainties in long-term drought characteristics over the Canadian Prairie provinces, as simulated by the Canadian RCM. Clim Res 58 209–220. doi:10.3354/cr01196

    Article  Google Scholar 

  • Park CK, Byun HR, Deo R, Lee BR (2015) Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea. J Hydrol 526:221–230

    Article  Google Scholar 

  • Qian WH, Shan XH, Zhu YF (2011) Ranking regional drought events in China for 1960–2009. Adv Atmos Sci 28(2):310–321

    Article  Google Scholar 

  • Qin DH, Zhang JY, Shan CC et al (2015) China national assessment report on risk management and adaptation of climate extremes and disasters. Science Press, Beijing, pp 70–124

    Google Scholar 

  • Raisanen J (2007) How reliable are climate models? Tellus A 59:2–29

    Article  Google Scholar 

  • Reifen C, Toumi R (2009) Climate projections: past performance on guarantee of future skill? Geophys Res Lett 36:L13704

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM(CCLM). Meteorol Z 17(4):347–348

    Article  Google Scholar 

  • Rohde R, Muller RA, Jacobsen R et al (2013) A new estimate of average earth surface land temperature spanning 1753 to 2011. Geoinfor Geostat Overv 1(1):1–7

    Google Scholar 

  • Seneviratne SI (2012) Historical drought trends revisited. Nature 495:338–339

    Article  Google Scholar 

  • Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J Geophys Res 112:D17115

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP (2009) Global and continental drought in the second half of the twentieth century: severity-area-duration analysis and temporal variability of large-scale events. J Clim 22(8):1962–1981

    Article  Google Scholar 

  • Shi YF, Shen YP, Li DL et al (2003) Discussion on the present climate change from warm-dry to warm-wet in Northwest China. Quat Sci 23:152–164

    Google Scholar 

  • Sun C, Yang S (2012) Persistent severe drought in southern China during winter-spring 2011: large-scale circulation patterns and possible impacts factors. J Geophys Res 117:D10112

    Article  Google Scholar 

  • Svoboda MD, Fuchs BA, Poulsen CC, Nothwehr JR (2015) The drought risk atlas: Enhancing decision support for drought risk management in the United States. J Hydrol 523:274–286

    Article  Google Scholar 

  • Tao H, Borth H, Fraedrich K, Su BD, Zhu XH (2014) Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int J Climatol 34(8):2678–2684

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 934:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change. doi:10.1007/s10584-011-0148-z

    Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano S M, Begueria S, Lorenzo-Lacruz J, Camarero JJ, Lopez-Moreno JI, Azorin-Molina C, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16(10):1–27

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25(7–8):739–753

    Article  Google Scholar 

  • Wang L, Chen W (2014) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34:2059–2078

    Article  Google Scholar 

  • Wang D, Menz C, Simon T, Simmer C, Ohlwein C (2013) Regional dynamical downscaling with CCLM over East Asia. Meteorol Atmos Phys 121:39–53

    Article  Google Scholar 

  • Wehner M, Easterling DR, Lawrimore JH et al (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeorol 12:1359–1376

    Article  Google Scholar 

  • Wong G, Van Lanen HAJ, Torfs P (2013) Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrol Sci J 58(2):253–270

    Article  Google Scholar 

  • World Meteorological Organization (WMO) (2012) Standardized precipitation index user guide (WMO-No.1090), Geneva

  • Wu H, Hayes MJ, Wilhite DA et al (2005) The effect of the length of record on the standardized precipitation index calculation. Int J Climatol 25:505–520

    Article  Google Scholar 

  • Xu Y, Xu CH. 2012a. Preliminary assessment of simulations of climate changes over China by CMIP5 Multi-models. Atmos Ocean Sci Lett 5(6):489–494

    Google Scholar 

  • Xu CH, Xu Y. (2012b) The projection of temperature and preipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos Ocean Sci Lett 5(6):527–533.

    Google Scholar 

  • Xu JY, Shi Y, Gao XJ, Giorgi F (2013) Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chin Sci Bull 58:1443–1452

    Article  Google Scholar 

  • Xu K, Yang DW, Yang HB, Li Z, Qin Y, Shen Y (2015) Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. J Hydrol 526:253–264

    Article  Google Scholar 

  • Yang CG, Yu ZB, Hao ZC, Zhang JY, Zhu JT (2012) Impact of climate change on flood and drought events in Huaihe River Basin, China. Hydrol Res 43(1–2):14–22

    Article  Google Scholar 

  • Yin Y, Wu S, Chen G, Dai E (2010) Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor Appl Climatol 101:19–28

    Article  Google Scholar 

  • Yin Y, Ma D, Wu S, Pan T (2015) Projections of aridity and its regional variability over China in the mid-21st century. Int J Climatol 35(14):4387–4398. doi:10.1002/joc.4295

    Article  Google Scholar 

  • Yu ET, Wang HJ, Sun JQ (2010) A quick report on a dynamical downscaling sumulation over China using the nested model. Atmos Ocean Sci Lett 3(6):325–329

    Article  Google Scholar 

  • Yu X, He X, Zheng H, Guo R, Ren Z, Zhang D, Lin J (2014a) Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat Hazards 71(1):275–289

    Article  Google Scholar 

  • Yu MX, Li QF, Hayes MJ, Svoboda MD, Heim RR (2014b) Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int J Climatol 34:545–558

    Article  Google Scholar 

  • Zarch MAA, Sivakumar B, Sharma A (2015) Droughts in a warming cliamte: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J Hydrol 526:183–195

    Article  Google Scholar 

  • Zhai JQ, Su BD, Krysanova V, Gao C, Jiang T (2010a) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Clim 23:649–663

    Article  Google Scholar 

  • Zhai JQ, Liu B, Hartmann H, Su BD, Jiang T, Fraedrich K (2010b) Dryness/wetness variations in ten large river basins of China during the first 50 years of the 21st century. Quat Int 226:101–111

    Article  Google Scholar 

  • Zhai JQ, Gao B, Zhu XY (2014) Fact sheet on climate disasters in China. In: Wang G W, Zheng GG (eds) Annual report on actions to address climate change. Social Sciences Academic Press, Beijing

    Google Scholar 

  • Zhai JQ, Huang JL, Su BD, Cao LG, Wang YJ, Jiang T, Fischer T (2016) Intensity-area-duration analysis on droughts in China. Clim Dyn. doi:10.1007/s00382-016-3066-y

    Google Scholar 

  • Zhang L, Xiao J, Li J, Wang K, Lei L, Guo H (2012) The 2010 spring drought reduced primary productivity in southwestern China. Environ Res Lett 7. doi:10.1088/1748-9326/7/4/045706

  • Zhang MJ, He JY, Wang BL, Wang SJ, Li SS, Liu WL, Ma XN (2013) Extreme drought changes in Southwest China from 1960 to 2009. J Geog Sci 23(1):3–16

    Article  Google Scholar 

  • Zhao GJ, Mu XM, Hörmann G, Fohrer N, Xiong M, Su BD, Li XC (2012) Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quat Int 282:5–13

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (973 Program; No. 2013CB430205) and the National Natural Science Foundation of China (Nos. 41571494, 41671211, 41401056). The authors also thank the National 1000 Talent program (Y474171) and the cooperation project between the Natural Science Foundation of China and the Pakistan Science Foundation (41661144027) for supporting a Doctor’s program conducting this research. The authors are thankful to the editor and the reviewers for their valuable suggestions in the improvement of the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buda Su or Thomas Fischer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhai, J., Jiang, T. et al. Analysis of future drought characteristics in China using the regional climate model CCLM. Clim Dyn 50, 507–525 (2018). https://doi.org/10.1007/s00382-017-3623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3623-z

Keywords

  • Drought
  • Intensity
  • Area
  • Duration
  • CCLM
  • China