Skip to main content

Advertisement

Log in

Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979–2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean–atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981–2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Belleflamme A, Fettweis X, Lang C, Erpicum M (2013) Current and future atmospheric circulation of 500 hPa over Greenland simulated by CMIP3 and CMIP5 global models. Clim Dyn 41:2061–2080. doi:10.1007/s00382-012-1538-2

    Article  Google Scholar 

  • Box JE (2002) Survey of Greenland instrumental temperature records: 1873–2001. Int J Climatol 22:1829–1847. doi:10.1002/joc.852

    Article  Google Scholar 

  • Box JE, Fettweis X, Stroeve JC, Tedesco M, Hall DK, Steffen K (2012) Greenland Ice Sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6:821–839. doi:10.5194/tc-6-821-2012

    Article  Google Scholar 

  • Buch E, Pedersen SA, Ribergaard MH (2004) Ecosystem variability in West Greenland waters. J Northwest Atl Fish Sci 34:13–28. doi:10.2960/J.v34.m479

    Article  Google Scholar 

  • Budikova D, Chechi L (2016) Arctic sea ice and warm season North American extreme surface air temperatures. Clim Res 67:15–29. doi:10.3354/cr01349

    Article  Google Scholar 

  • Cappelen J (2015) Greenland—DMI historical climate data collection 1873–2014—with Danish abstracts. Technical Report No. 15-04. DMI, Copenhagen

  • Carr JR, Vieli A, Stokes C (2013) Influence of sea ice decline, atmosphere warming, and glacier width on marine-terminating outlet glacier behavior in northwest Greenland at seasonal to interannual time scales. J Geophys Res Earth Surf 118:1210–1226. doi:10.1022/jgrf.20088

    Article  Google Scholar 

  • Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present, and future of the AVHRR Pathfinder SST program. In: Oceanography from space. Springer, Dordrecht, p 273–287

  • Chylek P, Folland C, Frankcombe L, Dijkstra H, Lesins G, Dubey M (2012) Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophys Res Lett 39:L09705. doi:10.1029/2012GL051241

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Article  Google Scholar 

  • Ding Q, Wallace JM, Battisti DS, Steig EJ, Gallant AJE, Kim H-J, Geng L (2014) Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509:209–213. doi:10.1038/nature13260

    Article  Google Scholar 

  • Dufour A, Zolina O, Gulev S (2016) Atmospheric moisture transport to the Arctic: assessment of reanalyses and analysis of transport components. J Clim. doi:10.1175/JCLI-D-15-0559

  • Embury O, Merchant CJ, Corlett GK (2012) A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: initial validation, accounting for skin and diurnal variability effects. Remote Sens Environ 116:62–78

    Article  Google Scholar 

  • Enke W, Spekat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 8:195–207

    Article  Google Scholar 

  • Fang Z-F (2004) Statistical relationship between the Northern Hemisphere sea ice and atmospheric circulation during wintertime. In: Zhu X (ed) Observation, theory and modeling of atmospheric variability. World Scientific, Singapore, p 131–141

    Chapter  Google Scholar 

  • Fettweis X, Mabille G, Erpicum M, Nicolay S, Van den Broeke M (2011) The 1958–2009 Greenland Ice Sheet surface melt and the mid-tropospheric atmospheric circulation. Clim Dyn 36:139–159. doi:10.1007/s00382-010-0772-8

    Article  Google Scholar 

  • Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H (2013) Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland Ice Sheet. Cryosphere 7:241–248

    Article  Google Scholar 

  • Francis J, Skific N (2015) Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos Trans R Soc A 373:20140170. doi:10.1098/rsta.2014.0170

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2015) Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett 10:014005. doi:10.1088/1748-9326/10/1/014005

    Article  Google Scholar 

  • Hall R, Erdélyi R, Hanna E, Jones JM, Scaife AA (2015) Drivers of North Atlantic Polar Front jet stream variability. Int J Climatol 35:1697–1720. doi:10.1002/joc.4121

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland Ice Sheet: 1958–2003. J Geophys Res Atmos 110:D13108. doi:10.1029/2004JD005641

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Cappelen J, Steffen K, Bales RC, Burgess E, McConnell JR, Steffensen JP, Van den Broeke M, Wake L, Bigg G, Savas D (2011) Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J Geophys Res 116:D24121. doi:10.1029/2011JD016387

    Article  Google Scholar 

  • Hanna E, Mernild SH, Cappelen J, Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ Res Lett 7:1–15. doi:10.1088/1748-9326/7/4/045404

    Google Scholar 

  • Hanna E, Jones JM, Cappelen J, Mernild SH, Wood L, Steffen K, Huybrechts P (2013) The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int J Climatol 33:862–880. doi:10.1002/joc.3475

    Article  Google Scholar 

  • Hanna E, Fettweis X, Mernild SH, Cappelen J, Ribergaard MH, Shuman CA, Steffen K, Wood L, Mote T (2014) Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int J Climatol 34:1022–1037. doi:10.1002/joc.3743

    Article  Google Scholar 

  • Hanna E, Cropper TE, Jones PD, Scaife AA, Allen R (2015) Recent summer asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int J Climatol 35:2540–2554. doi:10.1002/joc.4157

    Article  Google Scholar 

  • Hanna E, Cropper TE, Hall RJ, Cappelen J (2016) Greenland Blocking Index 1851–2015: a regional climate change signal. Int J Climatol. doi:10.1002/joc.4673

  • Høyer JL, Karagali I (2016) Sea surface temperature climate data record for the North Sea and Baltic Sea. J Clim 29:2529–2541. doi:10.1175/JCLI-D-15-0663.1

    Article  Google Scholar 

  • Høyer JL, She J (2007) Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. J Mar Syst 65(1):176–189

    Article  Google Scholar 

  • Høyer JL, Le Borgne P, Eastwood S (2014) A bias correction method for Arctic satellite sea surface temperature observations. Remote Sens Environ 146:201–213

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jakobsen PK, Ribergaard MH, Quadfasel D, Schmith T, Hughes CW (2003) The near surface circulation in the Northern North Atlantic as inferred from Lagrangian drifters: variability from the mesoscale to interannual. J Geophys Res 108(C8):3251. doi:10.1029/2002JC001554

    Article  Google Scholar 

  • Jensen TS, Box JE, Hvidberg CS (2016) A sensitivity study of annual area change for Greenland Ice Sheet marine terminating outlet glaciers: 1999–2013. J Glaciol 62: 72–81. doi:10.1017/jog.2016.12

    Article  Google Scholar 

  • Jowett AE, Hanna E, Ng F, Huybrechts P, Janssens I (2015) A new spatially and temporally variable sigma parameter in degree-day melt modelling of the Greenland Ice Sheet 1870–2013. Cryosphere Discuss 9:5327–5371. doi:10.5194/tcd-9-5327-2015

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Key J, Crane RG (1986) A comparison of synoptic classification schemes based on ‘objective’ procedures. J Climatol 6:375–388

    Article  Google Scholar 

  • Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res Oceans 109:C01009. doi:10.1029/2003JC001785

    Google Scholar 

  • Liu J, Chen Z, Francis J, Song M, Mote T, Hu Y (2016) Has Arctic sea ice loss contributed to increased surface melting of the Greenland Ice Sheet? J Clim. doi:10.1175/JCLI-D-15-0391

  • Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi:10.1029/2009JC005436

    Article  Google Scholar 

  • Maykut GA (1978) Energy exchange over young sea ice in the Central Arctic. J Geophys Res 83:3646–3658

    Article  Google Scholar 

  • McLeod JT, Mote TL (2016) Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland Ice Sheet. Int J Climatol 36:1484–1499. doi:10.1002/joc.4440

    Article  Google Scholar 

  • Mernild SH, Hanna E, Yde JC, Cappelen J, Malmros JK (2014) Coastal Greenland air temperature extremes and trends 1890–2010: annual and monthly analysis. Int J Climatol 34:1472–1487. doi:10.1002/joc.3777

    Article  Google Scholar 

  • Mote TL (1998) Mid-tropospheric circulation and surface melt on the Greenland Ice Sheet. Part II: synoptic climatology. Int J Climatol 18:131–145

    Article  Google Scholar 

  • Myers PG, Ribergaard MH (2013) Warming of the polar water layer in Disko Bay and potential impact on Jakobshavn Isbrae. J Phys Oceanogr 43:2629–2640. doi:10.1175/JPO-D-12-051.1

    Article  Google Scholar 

  • Myers PG, Kulan N, Ribergaard MH (2007) Irminger water variability in the West Greenland current. Geophys Res Lett 34:L17601. doi:10.1029/2007GL030419

    Article  Google Scholar 

  • Myers PG, Donnelly C, Ribergaard MH (2009) Structure and variability of the West Greenland current in summer derived from 6 repeat standard sections. Prog Oceanogr 80:93–112. doi:10.1016/j.pocean.2008.12.003

    Article  Google Scholar 

  • Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Ukita J (2015) A negative phase shift of the winter AO/NAO due to the recent Arctic sea ice reduction in late autumn. J Geophys Res Atmos 120:3209–3227. doi:10.1002/2014JD022848

    Article  Google Scholar 

  • Noël B, Fettweis X, van de Berg W, van den Broeke M, Erpicum M (2014) Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere 8:1871–1883. doi:10.5194/tc-8-1871-2014

    Article  Google Scholar 

  • Overland JE, Wang M (2015) Increased variability in the early winter subarctic North American atmospheric circulation. J Clim 28:7297–7305. doi:10.1175/JCLI-D-15-0395.1

    Article  Google Scholar 

  • Overland J, Hanna E, Hanssen-Bauer I, Kim S-J, Walsh JE, Wang M, Bhatt US, Thoman RL (2015a) Surface air temperature [in Arctic Report Card 2015]. http://www.arctic.noaa.gov/reportcard. Accessed 3 June 2016

  • Overland J, Francis JA, Hall R, Hanna E, Kim S-J, Vihma T (2015b) The melting Arctic and midlatitude weather patterns: Are they connected? J Clim 28:7917–7932. doi:10.1175/JCLI-D-14-00822.1

    Article  Google Scholar 

  • Parkinson CL (2014) Spatially mapped reductions in the length of the Arctic sea ice season. Geophys Res Lett 41:4316–4322. doi:10.1002/2014GL060434

    Article  Google Scholar 

  • Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. doi:10.1029/2007/GL031480

    Article  Google Scholar 

  • Perovich D, Meier W, Tschudi M, Farrell S, Gerland S, Hendricks S (2015) Sea ice [in Arctic Report Card 2015]. http://www.arctic.noaa.gov/reportcard. Accessed 3 June 2016

  • Rennermalm A, Smith L, Stroeve J, Chu V (2009) Does sea ice influence Greenland Ice Sheet surface-melt? Environ Res Lett 4:1–7. doi:10.1088/1748-9326/4/2/024001

    Article  Google Scholar 

  • Ribergaard MH (2014) Oceanographic investigations off West Greenland 2013. NAFO Scientific Council Documents 14/001.

  • Rogers JC, Wang C-C, McHugh MJ (1998) Persistent cold climatic episodes around Greenland and Baffin Island: links to decadal-scale sea surface temperature anomalies. Geophys Res Lett 25:3971–3974

    Article  Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77:85–96. doi:10.1016/j.glopacha.2011.03.004

    Article  Google Scholar 

  • Steffen K, Box J (2001) Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J Geophys Res 106:33951–33964

    Article  Google Scholar 

  • Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225. doi:10.1002/2013GL058951

    Article  Google Scholar 

  • Tedesco M, Mote T, Fettweis X, Hanna E, Jeyaratnam J, Booth JF, Datta R, Briggs K (2016) Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat Commun 7:11723. doi:10.1038/ncomms11723

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214. doi:10.1007/s10712-014-9284-0.

    Article  Google Scholar 

  • Walsh JE (2014) Intensified warming of the Arctic: causes and impacts on middle latitudes. Glob Planet Change 117:52–63. doi:10.1016/j.gloplacha.2014.03.003

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic, Oxford

    Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smoth SR, Wilkinson C (2011) ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31(7):951–967

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B, Turner A (2010) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Clim 23:1291–1307

    Article  Google Scholar 

  • Yarnal B (1993) Synoptic climatology in environmental analysis: a primer. Belhaven Press, London

    Google Scholar 

Download references

Acknowledgements

The Editor and Reviewers are thanked for their constructive comments, which helped improve the manuscript. Special thanks to David McCutcheon (Department of Geography, University of Sheffield) for his assistance in drafting Fig. 1. The AO dataset is obtained through the Climate Prediction Center webpage (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml), and NAO data may be found on the NCAR Climate Data Guide website (https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based). GBI data can be accessed from: https://www.sheffield.ac.uk/geography/staff/hanna_edward/gbi. NCEP/NCAR Reanalysis data are obtained from http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. EH and RJH acknowledge support from the University of Sheffield’s Project Sunshine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Ballinger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballinger, T.J., Hanna, E., Hall, R.J. et al. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns. Clim Dyn 50, 83–100 (2018). https://doi.org/10.1007/s00382-017-3583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3583-3

Keywords

Navigation